HJB-inequalities in estimating reachable sets of a control system under uncertainty
Ural mathematical journal, Tome 8 (2022) no. 1, pp. 34-42

Voir la notice de l'article provenant de la source Math-Net.Ru

Using the technique of generalized inequalities of the Hamilton-Jacobi-Bellman type, we study here the state estimation problem for a control system which operates under conditions of uncertainty and nonlinearity of a special kind, when the dynamic equations describing the studied system simultaneously contain the different forms of nonlinearity in state velocities. Namely, quadratic functions and uncertain matrices of state velocity coefficients are presented therein. The external ellipsoidal bounds for reachable sets are found, some approaches which may produce internal estimates for such sets are also mentioned. The example is included to illustrate the result.
Keywords: control, nonlinearity, uncertainty, ellipsoidal calculus, state estimation.
@article{UMJ_2022_8_1_a3,
     author = {Tatiana F. Filippova},
     title = {HJB-inequalities in estimating reachable sets of a control system under uncertainty},
     journal = {Ural mathematical journal},
     pages = {34--42},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2022_8_1_a3/}
}
TY  - JOUR
AU  - Tatiana F. Filippova
TI  - HJB-inequalities in estimating reachable sets of a control system under uncertainty
JO  - Ural mathematical journal
PY  - 2022
SP  - 34
EP  - 42
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UMJ_2022_8_1_a3/
LA  - en
ID  - UMJ_2022_8_1_a3
ER  - 
%0 Journal Article
%A Tatiana F. Filippova
%T HJB-inequalities in estimating reachable sets of a control system under uncertainty
%J Ural mathematical journal
%D 2022
%P 34-42
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UMJ_2022_8_1_a3/
%G en
%F UMJ_2022_8_1_a3
Tatiana F. Filippova. HJB-inequalities in estimating reachable sets of a control system under uncertainty. Ural mathematical journal, Tome 8 (2022) no. 1, pp. 34-42. http://geodesic.mathdoc.fr/item/UMJ_2022_8_1_a3/