@article{UMJ_2022_8_1_a3,
author = {Tatiana F. Filippova},
title = {HJB-inequalities in estimating reachable sets of a control system under uncertainty},
journal = {Ural mathematical journal},
pages = {34--42},
year = {2022},
volume = {8},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UMJ_2022_8_1_a3/}
}
Tatiana F. Filippova. HJB-inequalities in estimating reachable sets of a control system under uncertainty. Ural mathematical journal, Tome 8 (2022) no. 1, pp. 34-42. http://geodesic.mathdoc.fr/item/UMJ_2022_8_1_a3/
[1] Althoff M., Stursberg O., Buss M., “Reachability analysis of nonlinear systems with uncertain parameters using conservative linearization”, Proc. 2008 47th IEEE Conference on Decision and Control, IEEE Xplore, 2008, 4042—4048 | DOI
[2] Ananyev B. I., Gusev M. I., Filippova T. F., Upravlenie i ocenivanie sostoyanij dinamicheskikh sistem s neopredelennost'yu [Control and Estimation of Dynamical Systems States with Uncertainty], Izdatel'stvo SO RAN, Novosibirsk, 2018, 193 pp. (in Russian)
[3] Apreutesei N. C., “An optimal control problem for a prey-predator system with a general functional response”, Appl. Math. Lett., 22:7 (2009), 1062–1065 | DOI | MR | Zbl
[4] August E., Lu J., Koeppl H., “Trajectory enclosures for nonlinear systems with uncertain initial conditions and parameters”, Proc. 2012 American Control Conference, IEEE Xplore, 2012, 1488–1493 | DOI
[5] Baier R., Gerdts M., Xausa I., “Approximation of reachable sets using optimal control algorithms”, Numer. Algebra Control Optim., 3:3 (2013), 519–548 | DOI | MR | Zbl
[6] Boscain U., Chambrion T., Sigalotti M., “On some open questions in bilinear quantum control”, Proc. 2013 European Control Conference (ECC), IEEE Xplore, 2013, 2080–2085 | DOI
[7] Ceccarelli N., Di Marco M., Garulli A., Giannitrapani A., “A set theoretic approach to path planning for mobile robots”, Proc. 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601), IEEE Xplore, 2004, 147–152 | DOI
[8] Chernousko F. L., State Estimation for Dynamic Systems, CRC Press, Boca Raton, 1994, 304 pp.
[9] Crandall M. G., Lions P.-L., “Viscosity solutions of Hamilton–Jacobi equations”, Trans. Amer. Math. Soc., 277:1 (1983), 1–42 | DOI | MR | Zbl
[10] Filippova T. F., “Ellipsoidal estimates of reachable sets for control systems with nonlinear terms”, IFAC-PapersOnLine, 50:1 (2017), 15355–15360 | DOI | MR
[11] Filippova T. F., “Reachable sets of nonlinear control systems with state constraints and uncertainty and their estimates”, Cybern. Phys., 6:4 (2017), 185–194 | MR
[12] Filippova T. F., “Estimates of reachable sets of a nonlinear dynamical system with impulsive vector control and uncertainty”, Proc. 2018 14th Int. Conf. “Stability and Oscillations of Nonlinear Control Systems” (Pyatnitskiy's Conference) (STAB), IEEE Xplore, 2018, 1–4 | DOI
[13] Filippova T. F., “The HJB approach and state estimation for control systems with uncertainty”, IFAC-PapersOnLine, 51:13 (2018), 7–12 | DOI | MR
[14] Filippova T. F., “Differential equations for ellipsoidal estimates of reachable sets for a class of control systems with nonlinearity and uncertainty”, IFAC-PapersOnLine, 51:32 (2018), 770–775 | DOI | MR
[15] “Estimation of star-shaped reachable sets of nonlinear control system”, Proc. Large-Scale Scientific Computing, LSSC 2017, Lecture Notes in Comput. Sci., 10665, Springer, Cham, 2018, 210–218. | DOI | MR | Zbl
[16] Filippova T. F., “Control and estimation for a class of impulsive dynamical systems”, Ural Math. J., 5:2 (2019), 21–30 | DOI | MR | Zbl
[17] Filippova T. F., “Control of a bilinear system in conditions of uncertainty”, Proc. 2020 15th Int. Conf. Stability and Oscillations of Nonlinear Control Systems (Pyatnitskiy's Conference) (STAB), IEEE Xplore, 2020, 1–4 | DOI
[18] Goubault E., Putot S., “Robust under-approximations and application to reachability of non-linear control systems with disturbances”, IEEE Control Syst. Lett., 4:4 (2020), 928–933 | DOI | MR
[19] Gusev M. I., Kurzhanski A. B., “On the Hamiltonian techniques for designing nonlinear observers under set-membership uncertainty”, IFAC Proceedings Volumes, 40:12 (2007), 633–638 | DOI
[20] Kurzhanski A. B., “Identification – a theory of guaranteed estimates”, From Data to Model, ed. Willems J.C., Springer, Berlin, Heidelberg, 1989, 135–214 | DOI
[21] Kurzhanski A. B., “Comparison principle for equations of the Hamilton-Jacobi type in control theory”, Proc. Steklov Inst. Math., 253 (2006), S185–S195 | DOI | MR
[22] Kurzhanski A. B., “Hamiltonian techniques for the problem of set-membership state estimation”, Internat. J. Adapt. Control Signal Process, 25:3 (2010), 249–263 | DOI | MR
[23] Kurzhanskii A. B., Filippova T. F., “On a description of the set of viable trajectories of a differential inclusion”, Dokl. Akad. Nauk SSSR, 289:1 (1986), 38—41 (in Russian) | MR
[24] Kurzhanski A. B., Varaiya P., Dynamics and Control of Trajectory Tubes: Theory and Computation, Systems Control Found. Appl., 85, Birkhäuser, Basel, 2014, 445 pp. | DOI | MR | Zbl
[25] Ornik M., “Guaranteed reachability for systems with unknown dynamics”, Proc. 2020 59th IEEE Conference on Decision and Control (CDC), IEEE Xplore, 2020, 2756–2761 | DOI
[26] Polyak B. T., Nazin S. A., Durieu C., Walter E., “Ellipsoidal parameter or state estimation under model uncertainty”, Automatica, 40:7 (2004), 1171–1179 | DOI | MR | Zbl