Induced $nK_{2}$ decomposition of infinite square grids and infinite hexagonal grids
Ural mathematical journal, Tome 8 (2022) no. 1, pp. 23-33 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The induced $nK_2$ decomposition of infinite square grids and hexagonal grids are described here. We use the multi-level distance edge labeling as an effective technique in the decomposition of square grids. If the edges are adjacent, then their color difference is at least $2$ and if they are separated by exactly a single edge, then their colors must be distinct. Only non-negative integers are used for labeling. The proposed partitioning technique per the edge labels to get the induced $nK_2$ decomposition of the ladder graph is the square grid and the hexagonal grid.
Keywords: distance labelling, channel assignment, $L(h,k)$-colouring, rectangular grid
Mots-clés : hexagonal grid.
@article{UMJ_2022_8_1_a2,
     author = {Dinesan Deepthy and Joseph Varghese Kureethara},
     title = {Induced $nK_{2}$ decomposition of infinite square grids and infinite hexagonal grids},
     journal = {Ural mathematical journal},
     pages = {23--33},
     year = {2022},
     volume = {8},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2022_8_1_a2/}
}
TY  - JOUR
AU  - Dinesan Deepthy
AU  - Joseph Varghese Kureethara
TI  - Induced $nK_{2}$ decomposition of infinite square grids and infinite hexagonal grids
JO  - Ural mathematical journal
PY  - 2022
SP  - 23
EP  - 33
VL  - 8
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UMJ_2022_8_1_a2/
LA  - en
ID  - UMJ_2022_8_1_a2
ER  - 
%0 Journal Article
%A Dinesan Deepthy
%A Joseph Varghese Kureethara
%T Induced $nK_{2}$ decomposition of infinite square grids and infinite hexagonal grids
%J Ural mathematical journal
%D 2022
%P 23-33
%V 8
%N 1
%U http://geodesic.mathdoc.fr/item/UMJ_2022_8_1_a2/
%G en
%F UMJ_2022_8_1_a2
Dinesan Deepthy; Joseph Varghese Kureethara. Induced $nK_{2}$ decomposition of infinite square grids and infinite hexagonal grids. Ural mathematical journal, Tome 8 (2022) no. 1, pp. 23-33. http://geodesic.mathdoc.fr/item/UMJ_2022_8_1_a2/

[1] Balci M. A., Dündar P., “Average edge-distance in graphs”, Selçuk J. Appl. Math., 11:2 (2010), 63–70 | MR | Zbl

[2] Chartrand G., Lesniak L., Zhang, Graphs and Digraphs, 6th Ed., CRC Press, Boca Raton, US, 2016 | DOI | MR | Zbl

[3] Deepthy D., Kureethara J. V., “On $L'(2,1)$–edge coloring number of regular grids”, An. Şt. Univ. Ovidius Constanţa, 27:3 (2019), 65–81 https://sciendo.com/pdf/10.2478/auom-2019-0034 | MR | Zbl

[4] Deepthy D., Kureethara J. V., “$L'(2,1)$–edge coloring of trees and cartesian product of path graphs”, Int. J. Pure Appl. Math., 117:13 (2017), 135–143

[5] Guo D., Zhan H., Wong M.D.F., “On coloring rectangular and diagonal grid graphs for multiple patterning lithography”, 23rd Asia and South Pacific Design Automation Conference, IEEE Xplore, 2018, 387–392 | DOI

[6] Stiebitz M., Scheide D., Toft B., Favrholdt L. M., Graph Edge Coloring: Vizing's Theorem and Goldberg's Conjecture, John Wiley Sons Inc., Hoboken, NJ, 2012, 344 pp. | MR

[7] Yeh R. K., Labelling Graphs with a Condition at Distance Two, Ph. D. Thesis, University of South Carolina, Columbia, SC, 1990 | MR | Zbl