Evolution of a multiscale singularity of the solution of the Burgers equation in the 4-dimensional space-time
Ural mathematical journal, Tome 8 (2022) no. 1, pp. 136-144 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The solution of the Cauchy problem for the vector Burgers equation with a small parameter of dissipation $\varepsilon$ in the $4$-dimensional space-time is studied: $$ \mathbf{u}_t + (\mathbf{u}\nabla) \mathbf{u} = \varepsilon \triangle \mathbf{u}, \quad u_{\nu} (\mathbf{x}, -1, \varepsilon) = - x_{\nu} + 4^{-\nu}(\nu + 1) x_{\nu}^{2\nu + 1}, $$ With the help of the Cole–Hopf transform $\mathbf{u} = - 2 \varepsilon \nabla \ln H$, the exact solution and its leading asymptotic approximation, depending on six space-time scales, near a singular point are found. A formula for the growth of partial derivatives of the components of the vector field $\mathbf{u}$ on the time interval from the initial moment to the singular point, called the formula of the gradient catastrophe, is established: $$ \frac{\partial u_{\nu} (0, t, \varepsilon)}{\partial x_{\nu}} = \frac{1}{t} \left[ 1 + O \left( \varepsilon |t|^{- 1 - 1/\nu} \right) \right]\!, \quad \frac{t}{\varepsilon^{\nu /(\nu + 1)} } \to -\infty, \quad t \to -0. $$ The asymptotics of the solution far from the singular point, involving a multistep reconstruction of the space-time scales, is also obtained: $$ u_{\nu} (\mathbf{x}, t, \varepsilon) \approx - 2 \left( \frac{t}{\nu + 1} \right)^{1/2\nu} \tanh \left[ \frac{x_{\nu}}{\varepsilon} \left( \frac{t}{\nu + 1} \right)^{1/2\nu} \right]\!, \quad \frac{t}{\varepsilon^{\nu /(\nu + 1)} } \to +\infty. $$
Keywords: vector Burgers equation, cauchy problem, singular point, Laplace's method, multiscale asymptotics.
Mots-clés : Cole-Hopf transform
@article{UMJ_2022_8_1_a11,
     author = {Sergey V. Zakharov},
     title = {Evolution of a multiscale singularity of the solution of the {Burgers} equation in the 4-dimensional space-time},
     journal = {Ural mathematical journal},
     pages = {136--144},
     year = {2022},
     volume = {8},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2022_8_1_a11/}
}
TY  - JOUR
AU  - Sergey V. Zakharov
TI  - Evolution of a multiscale singularity of the solution of the Burgers equation in the 4-dimensional space-time
JO  - Ural mathematical journal
PY  - 2022
SP  - 136
EP  - 144
VL  - 8
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UMJ_2022_8_1_a11/
LA  - en
ID  - UMJ_2022_8_1_a11
ER  - 
%0 Journal Article
%A Sergey V. Zakharov
%T Evolution of a multiscale singularity of the solution of the Burgers equation in the 4-dimensional space-time
%J Ural mathematical journal
%D 2022
%P 136-144
%V 8
%N 1
%U http://geodesic.mathdoc.fr/item/UMJ_2022_8_1_a11/
%G en
%F UMJ_2022_8_1_a11
Sergey V. Zakharov. Evolution of a multiscale singularity of the solution of the Burgers equation in the 4-dimensional space-time. Ural mathematical journal, Tome 8 (2022) no. 1, pp. 136-144. http://geodesic.mathdoc.fr/item/UMJ_2022_8_1_a11/

[1] Arnold V. I., Singularities of Caustics and Wave Fronts, v. 62, Math. Its Appl. Ser., Kluwer Acad. Publ., Dordrecht, 1990. 258 | DOI | MR | Zbl

[2] Arnold V. I., Gusein-Zade S. M., Varchenko A. N., Singularities of Differentiable Maps. Vol I. Classification of Critical Points, Caustics and Wave Fronts, Monogr. Math., 82, Birkh{ä}user, Boston, MA, 1985, 392 pp. | MR

[3] Bogaevsky I. A., “Reconstructions of singularities of minimum functions, and bifurcations of shock waves of the Burgers equation with vanishing viscosity”, St. Petersburg Math. J., 1:4 (1990), 807–823 | MR | Zbl

[4] Bogaevsky I. A., “Perestroikas of shocks and singularities of minimum functions”, Phys. D: Nonlinear Phenomena, 173:1–2 (2002), 1–28 | DOI | MR | Zbl

[5] Gurbatov S. N., Rudenko O. V., Saichev A. I., Waves and Structures in Nonlinear Nondispersive Media: General Theory and Applications to Nonlinear Acoustics, Springer, Berlin, 2011, 472 pp. | DOI | MR | Zbl

[6] Gurbatov S. N., Saichev A. I., Shandarin S. F., “Large-scale structure of the Universe. The Zeldovich approximation and the adhesion model”, Phys. Usp., 55:3 (2012), 223–249 | DOI

[7] Il'in A. M., Matching of Asymptotic Expansions of Solutions of Boundary Value Problems, v. 102, Transl. Math. Monogr., Am. Math. Soc., Providence, R.I., 1992, 281 pp. | MR

[8] Zakharov S. V., “Asymptotic solution of the multidimensional Burgers equation near a singularity”, Theor. Math. Phys., 196:1 (2018), 976–982 | DOI | MR | Zbl

[9] Zakharov S. V., “Singular points and asymptotics in the singular Cauchy problem for the parabolic equation with a small parameter”, Comp. Math. Math. Phys., 60:5 (2020), 821–832 | DOI | MR | Zbl