Evolution of a multiscale singularity of the solution of the Burgers equation in the 4-dimensional space-time
Ural mathematical journal, Tome 8 (2022) no. 1, pp. 136-144
Voir la notice de l'article provenant de la source Math-Net.Ru
The solution of the Cauchy problem for the vector Burgers equation with a small parameter of dissipation $\varepsilon$
in the $4$-dimensional space-time is studied:
$$
\mathbf{u}_t + (\mathbf{u}\nabla) \mathbf{u} =
\varepsilon \triangle \mathbf{u}, \quad u_{\nu} (\mathbf{x}, -1, \varepsilon) = - x_{\nu} + 4^{-\nu}(\nu + 1) x_{\nu}^{2\nu + 1},
$$
With the help of the Cole–Hopf transform $\mathbf{u} = - 2 \varepsilon \nabla \ln H$,
the exact solution and its leading asymptotic approximation, depending on six space-time scales, near a singular point are found.
A formula for the growth of partial derivatives of the components of the vector field $\mathbf{u}$ on the time interval from the initial moment to the singular point, called the formula of the gradient catastrophe, is established:
$$ \frac{\partial u_{\nu} (0, t, \varepsilon)}{\partial x_{\nu}}
= \frac{1}{t} \left[ 1 + O \left( \varepsilon |t|^{- 1 - 1/\nu} \right) \right]\!,
\quad \frac{t}{\varepsilon^{\nu /(\nu + 1)} } \to -\infty, \quad t \to -0. $$
The asymptotics of the solution far from the singular point, involving a multistep reconstruction of the space-time scales,
is also obtained:
$$ u_{\nu} (\mathbf{x}, t, \varepsilon) \approx - 2 \left( \frac{t}{\nu + 1} \right)^{1/2\nu} \tanh \left[ \frac{x_{\nu}}{\varepsilon}
\left( \frac{t}{\nu + 1} \right)^{1/2\nu} \right]\!, \quad \frac{t}{\varepsilon^{\nu /(\nu + 1)} } \to +\infty.
$$
Keywords:
vector Burgers equation, cauchy problem, singular point, Laplace's method, multiscale asymptotics.
Mots-clés : Cole-Hopf transform
Mots-clés : Cole-Hopf transform
@article{UMJ_2022_8_1_a11,
author = {Sergey V. Zakharov},
title = {Evolution of a multiscale singularity of the solution of the {Burgers} equation in the 4-dimensional space-time},
journal = {Ural mathematical journal},
pages = {136--144},
publisher = {mathdoc},
volume = {8},
number = {1},
year = {2022},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UMJ_2022_8_1_a11/}
}
TY - JOUR AU - Sergey V. Zakharov TI - Evolution of a multiscale singularity of the solution of the Burgers equation in the 4-dimensional space-time JO - Ural mathematical journal PY - 2022 SP - 136 EP - 144 VL - 8 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UMJ_2022_8_1_a11/ LA - en ID - UMJ_2022_8_1_a11 ER -
%0 Journal Article %A Sergey V. Zakharov %T Evolution of a multiscale singularity of the solution of the Burgers equation in the 4-dimensional space-time %J Ural mathematical journal %D 2022 %P 136-144 %V 8 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/UMJ_2022_8_1_a11/ %G en %F UMJ_2022_8_1_a11
Sergey V. Zakharov. Evolution of a multiscale singularity of the solution of the Burgers equation in the 4-dimensional space-time. Ural mathematical journal, Tome 8 (2022) no. 1, pp. 136-144. http://geodesic.mathdoc.fr/item/UMJ_2022_8_1_a11/