@article{UMJ_2022_8_1_a10,
author = {D. Vamshee Krishna and D. Shalini},
title = {Hankel determinant of certain orders for some subclasses of holomorphic functions},
journal = {Ural mathematical journal},
pages = {128--135},
year = {2022},
volume = {8},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UMJ_2022_8_1_a10/}
}
D. Vamshee Krishna; D. Shalini. Hankel determinant of certain orders for some subclasses of holomorphic functions. Ural mathematical journal, Tome 8 (2022) no. 1, pp. 128-135. http://geodesic.mathdoc.fr/item/UMJ_2022_8_1_a10/
[1] Arif M., Rani L., Raza M., Zaprawa P., “Fourth Hankel determinant for the family of functions with bounded turning”, Bull. Korean Math. Soc., 55:6 (2018), 1703–1711 | DOI | MR | Zbl
[2] Kowalczyk B., Lecko A., Sim Y. J., “The sharp bound for the Hankel determinant of the third kind for convex functions”, Bull. Aust. Math. Soc., 97:3 (2018), 435–445 | DOI | MR | Zbl
[3] Babalola K. O., On $H_3 (1)$ Hankel Determinant for Some Classes of Univalent Functions, 2009, 7 pp., arXiv: 0910.3779v13 [math.CV]
[4] Bansal D., Maharana S., Prajapat J. K., “Third order Hankel determinant for certain univalent functions”, J. Korean Math. Soc., 52:6 (2015), 1139–1148 | DOI | MR | Zbl
[5] Cho N. E., Kowalczyk B., Kwon O. S. et al., “The bounds of some determinants for starlike functions of order alpha”, Bull. Malays. Math. Sci. Soc., 41:1 (2018), 523–535 | DOI | MR | Zbl
[6] Duren P. L., Univalent Functions, v. 259, Grundlehren Math. Wiss., Springer, New York, 1983, 384 pp. | MR | Zbl
[7] Fekete M., Szegö G., “Eine bemerkung über ungerade schlichte funktionen”, J. Lond. Math. Soc., s1-8:2 (1933), 85–89 | DOI | MR
[8] Hayami T., Owa S., “Generalized Hankel determinant for certain classes”, Int. J. Math. Anal., 4:52 (2010), 2573–2585 | MR | Zbl
[9] Janteng A., Halim S. A., Darus M., “Hankel determinant for starlike and convex functions”, Int. J. Math. Anal., 1:13 (2007), 619–625 | MR | Zbl
[10] Janteng A., Halim S. A., Darus M., “Coefficient inequality for a function whose derivative has a positive real part”, J. Inequal. Pure Appl. Math., 7:2 (2006), 1–5 | MR
[11] Lecko A., Sim Y. J., Smiarowska B., “The sharp bound of the Hankel determinant of the third kind for starlike functions of order 1/2”, Complex Anal. Oper. Theory, 13:5 (2019), 2231–2238 | DOI | MR | Zbl
[12] Lee S. K., Ravichandran V., Supramaniam S., “Bounds for the second Hankel determinant of certain univalent functions”, J. Inequal. Appl., 2013, 281 | DOI | MR
[13] Libera R. J., Złotkiewicz E. J., “Coefficient bounds for the inverse of a function with derivative in $\mathcal{P}$”, Proc. Amer. Math. Soc., 87:2 (1983), 251–257 | DOI | MR | Zbl
[14] Livingston A. E., “The coefficients of multivalent close-to-convex functions”, Proc. Amer. Math. Soc., 21:3 (1969), 545–552 | DOI | MR | Zbl
[15] Orhan H., Zaprawa P., “Third Hankel determinants for starlike and convex functions of order alpha”, Bull. Korean Math. Soc., 55:1 (2018), 165–173 | DOI | MR | Zbl
[16] Pommerenke Ch., Univalent Functions. With a Chapter on Quadratic Differentials by Gerd Jensen, Studia Mathematic Band XXV, Vandenhoeck and Ruprecht, GmbH, 1975, 376 pp. | MR | Zbl
[17] Pommerenke Ch., “On the coefficients and Hankel determinants of univalent functions”, J. Lond. Math. Soc., s1-41:1. (1966), 111–122. | DOI | MR | Zbl
[18] Raza M., Malik S. N., “Upper bound of third Hankel determinant for a class of analytic functions related with lemniscate of Bernoulli”, J. Inequal. Appl., 2013, 412 | DOI | MR | Zbl
[19] Sudharsan T. V., Vijayalakshmi S. P., Stephen B. A., “Third Hankel determinant for a subclass of analytic functions”, Malaya J. Mat., 2:4 (2014), 438–444 | Zbl
[20] Vamshee Krishna D., RamReddy T., “Coefficient inequality for certain $p$-valent analytic functions”, Rocky Mountain J. Math., 44:6 (2014), 1941–1959 | DOI | MR | Zbl
[21] Zaprawa P., “On Hankel determinant $H_2 (3)$ for univalent functions”, Results Math., 73:3 (2018), 1–12 | DOI | MR
[22] Zaprawa P., “Third Hankel determinants for subclasses of univalent functions”, Mediterr. J. Math., 14:1 (2017), 19, 1–10 | DOI | MR | Zbl