Hankel determinant of certain orders for some subclasses of holomorphic functions
Ural mathematical journal, Tome 8 (2022) no. 1, pp. 128-135 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we are introducing certain subfamilies of holomorphic functions and making an attempt to obtain an upper bound (UB) to the second and third order Hankel determinants by applying certain lemmas, Toeplitz determinants, for the normalized analytic functions belong to these classes, defined on the open unit disc in the complex plane. For one of the inequality, we have obtained sharp bound.
Keywords: holomorphic function, upper bound, hankel determinant, positive real function.
@article{UMJ_2022_8_1_a10,
     author = {D. Vamshee Krishna and D. Shalini},
     title = {Hankel determinant of certain orders for some subclasses of holomorphic functions},
     journal = {Ural mathematical journal},
     pages = {128--135},
     year = {2022},
     volume = {8},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2022_8_1_a10/}
}
TY  - JOUR
AU  - D. Vamshee Krishna
AU  - D. Shalini
TI  - Hankel determinant of certain orders for some subclasses of holomorphic functions
JO  - Ural mathematical journal
PY  - 2022
SP  - 128
EP  - 135
VL  - 8
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UMJ_2022_8_1_a10/
LA  - en
ID  - UMJ_2022_8_1_a10
ER  - 
%0 Journal Article
%A D. Vamshee Krishna
%A D. Shalini
%T Hankel determinant of certain orders for some subclasses of holomorphic functions
%J Ural mathematical journal
%D 2022
%P 128-135
%V 8
%N 1
%U http://geodesic.mathdoc.fr/item/UMJ_2022_8_1_a10/
%G en
%F UMJ_2022_8_1_a10
D. Vamshee Krishna; D. Shalini. Hankel determinant of certain orders for some subclasses of holomorphic functions. Ural mathematical journal, Tome 8 (2022) no. 1, pp. 128-135. http://geodesic.mathdoc.fr/item/UMJ_2022_8_1_a10/

[1] Arif M., Rani L., Raza M., Zaprawa P., “Fourth Hankel determinant for the family of functions with bounded turning”, Bull. Korean Math. Soc., 55:6 (2018), 1703–1711 | DOI | MR | Zbl

[2] Kowalczyk B., Lecko A., Sim Y. J., “The sharp bound for the Hankel determinant of the third kind for convex functions”, Bull. Aust. Math. Soc., 97:3 (2018), 435–445 | DOI | MR | Zbl

[3] Babalola K. O., On $H_3 (1)$ Hankel Determinant for Some Classes of Univalent Functions, 2009, 7 pp., arXiv: 0910.3779v13 [math.CV]

[4] Bansal D., Maharana S., Prajapat J. K., “Third order Hankel determinant for certain univalent functions”, J. Korean Math. Soc., 52:6 (2015), 1139–1148 | DOI | MR | Zbl

[5] Cho N. E., Kowalczyk B., Kwon O. S. et al., “The bounds of some determinants for starlike functions of order alpha”, Bull. Malays. Math. Sci. Soc., 41:1 (2018), 523–535 | DOI | MR | Zbl

[6] Duren P. L., Univalent Functions, v. 259, Grundlehren Math. Wiss., Springer, New York, 1983, 384 pp. | MR | Zbl

[7] Fekete M., Szegö G., “Eine bemerkung über ungerade schlichte funktionen”, J. Lond. Math. Soc., s1-8:2 (1933), 85–89 | DOI | MR

[8] Hayami T., Owa S., “Generalized Hankel determinant for certain classes”, Int. J. Math. Anal., 4:52 (2010), 2573–2585 | MR | Zbl

[9] Janteng A., Halim S. A., Darus M., “Hankel determinant for starlike and convex functions”, Int. J. Math. Anal., 1:13 (2007), 619–625 | MR | Zbl

[10] Janteng A., Halim S. A., Darus M., “Coefficient inequality for a function whose derivative has a positive real part”, J. Inequal. Pure Appl. Math., 7:2 (2006), 1–5 | MR

[11] Lecko A., Sim Y. J., Smiarowska B., “The sharp bound of the Hankel determinant of the third kind for starlike functions of order 1/2”, Complex Anal. Oper. Theory, 13:5 (2019), 2231–2238 | DOI | MR | Zbl

[12] Lee S. K., Ravichandran V., Supramaniam S., “Bounds for the second Hankel determinant of certain univalent functions”, J. Inequal. Appl., 2013, 281 | DOI | MR

[13] Libera R. J., Złotkiewicz E. J., “Coefficient bounds for the inverse of a function with derivative in $\mathcal{P}$”, Proc. Amer. Math. Soc., 87:2 (1983), 251–257 | DOI | MR | Zbl

[14] Livingston A. E., “The coefficients of multivalent close-to-convex functions”, Proc. Amer. Math. Soc., 21:3 (1969), 545–552 | DOI | MR | Zbl

[15] Orhan H., Zaprawa P., “Third Hankel determinants for starlike and convex functions of order alpha”, Bull. Korean Math. Soc., 55:1 (2018), 165–173 | DOI | MR | Zbl

[16] Pommerenke Ch., Univalent Functions. With a Chapter on Quadratic Differentials by Gerd Jensen, Studia Mathematic Band XXV, Vandenhoeck and Ruprecht, GmbH, 1975, 376 pp. | MR | Zbl

[17] Pommerenke Ch., “On the coefficients and Hankel determinants of univalent functions”, J. Lond. Math. Soc., s1-41:1. (1966), 111–122. | DOI | MR | Zbl

[18] Raza M., Malik S. N., “Upper bound of third Hankel determinant for a class of analytic functions related with lemniscate of Bernoulli”, J. Inequal. Appl., 2013, 412 | DOI | MR | Zbl

[19] Sudharsan T. V., Vijayalakshmi S. P., Stephen B. A., “Third Hankel determinant for a subclass of analytic functions”, Malaya J. Mat., 2:4 (2014), 438–444 | Zbl

[20] Vamshee Krishna D., RamReddy T., “Coefficient inequality for certain $p$-valent analytic functions”, Rocky Mountain J. Math., 44:6 (2014), 1941–1959 | DOI | MR | Zbl

[21] Zaprawa P., “On Hankel determinant $H_2 (3)$ for univalent functions”, Results Math., 73:3 (2018), 1–12 | DOI | MR

[22] Zaprawa P., “Third Hankel determinants for subclasses of univalent functions”, Mediterr. J. Math., 14:1 (2017), 19, 1–10 | DOI | MR | Zbl