@article{UMJ_2022_8_1_a1,
author = {Chiranjib Choudhury and Shyamal Debnath},
title = {On $A^{\mathcal{I^{K}}}${\textendash}summability},
journal = {Ural mathematical journal},
pages = {13--22},
year = {2022},
volume = {8},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UMJ_2022_8_1_a1/}
}
Chiranjib Choudhury; Shyamal Debnath. On $A^{\mathcal{I^{K}}}$–summability. Ural mathematical journal, Tome 8 (2022) no. 1, pp. 13-22. http://geodesic.mathdoc.fr/item/UMJ_2022_8_1_a1/
[1] Altinok M., Küçükaslan M., “Ideal limit superior-inferior”, Gazi Univ. J. Sci., 30:1 (2017), 401–411
[2] Banerjee A. K., Paul M., Weak and Weak* ${I^K}$-convergence in Normed Spaces, 2018, 10 pp., arXiv: 1811.06707v1 [math.GN]
[3] Banerjee A. K., Paul M., A Note on $I^K$ and $I^{K^{*}}$-convergence in Topological Spaces, 2018, 10 pp., arXiv: 1807.11772v1 [math.GN]
[4] Das P., Sleziak M., Toma V., “$I^K$-Cauchy functions”, Topology Appl., 173 (2014), 9–27 | DOI | MR | Zbl
[5] Das P., Sengupta S., Supina J., “$I^K$-convergence of sequence of functions”, Math. Slovaca, 69:5 (2019), 1137—1148 | DOI | MR | Zbl
[6] Edely O. H. H., “On some properties of $A^{I}$-summability and $A^{I^*}$-summability”, Azerb. J. Math., 11:1 (2021), 189–200 | MR | Zbl
[7] Edely O. H. H., Mursaleen M., “On statistical $A$-summability”, Math. Comput. Model, 49:3 (2009), 672–680 | DOI | MR | Zbl
[8] Freedman A. R., Sember J. J., “Densities and summability”, Pacific J. Math., 95:2 (1981), 293–305 | DOI | MR | Zbl
[9] Gogola J., Mačaj M., Visnyai T., “On $\mathcal{I}^{(q)}_{c}$-convergence”, Ann. Math. Inform., 38 (2011), 27–36 | MR | Zbl
[10] Jarrah A. M., Malkowsky E., “Ordinary, absolute and strong summability and matrix transformations”, Filomat, 2003, no. 17, 59–78 | DOI | MR | Zbl
[11] Kostyrko P., Mačaj M., Šalát T., Sleziak M., “$\mathcal{I}$-convergence and extremal $\mathcal{I}$-limit points”, Math. Slovaca, 55:4 (2005), 443–464 | MR | Zbl
[12] Kostyrko P., Šalát T., Wilczyński W., “$I$-convergence”, Real Anal. Exch., 26:2 (2000–2001), 669–686 | DOI | MR
[13] Mačaj M., Sleziak M., “$\mathcal{I}^K$-convergence”, Real Anal. Exch., 36:1 (2010–2011), 177–194 | MR
[14] Mursaleen M., “On some new invariant matrix methods of summability”, Q. J. Math., 34:1 (1983), 77–86 | DOI | MR | Zbl
[15] Mursaleen M., Alotaibi A., “On $\mathcal{I}$-convergence in random 2-normed spaces”, Math. Slovaca, 61:6 (2011), 933–940 | DOI | MR | Zbl
[16] Mursaleen M., Mohiuddine S. A., “On ideal convergence in probabilistic normed spaces”, Math. Slovaca, 62:1 (2012), 49–62 | DOI | MR | Zbl
[17] Nabiev A., Pehlivan S., Gürdal M., “On $\mathcal{I}$-Cauchy sequences”, Taiwanese J. Math., 11:2 (2007), 569–576 | DOI | MR | Zbl
[18] Šalát T., Tripathy B. C., Ziman M., “On some properties of $\mathcal{I}$-convergence”, Tatra Mt. Math. Publ., 28:2 (2004), 274–286 | MR
[19] Savaş E., “Generalized asymptotically $\mathcal{I}$-lacunary statistical equivalent of order $\alpha$ for sequences of sets”, Filomat, 31:6 (2017), 1507–1514 | DOI | MR | Zbl
[20] Savaş E., “General inclusion relations for absolute summability”, Math. Inequal. Appl., 8:3 (2005), 521–527 | MR | Zbl
[21] Savaş E., Gürdal M., “Ideal convergent function sequences in random 2-normed spaces”, Filomat, 30:3 (2016), 557–567 | DOI | MR | Zbl
[22] Tripathy B. C., Hazarika B., “Paranorm $I$-convergent sequence spaces”, Math. Slovaca, 59:4 (2009), 485–494 | DOI | MR | Zbl