On $A^{\mathcal{I^{K}}}$–summability
Ural mathematical journal, Tome 8 (2022) no. 1, pp. 13-22 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we introduce and investigate the concept of $A^{\mathcal{I^{K}}}$-summability as an extension of $A^{\mathcal{I^{*}}}$-summability which was recently (2021) introduced by O.H.H. Edely, where $A=(a_{nk})_{n,k=1}^{\infty}$ is a non-negative regular matrix and $\mathcal{I}$ and $\mathcal{K}$ represent two non-trivial admissible ideals in $\mathbb{N}$. We study some of its fundamental properties as well as a few inclusion relationships with some other known summability methods. We prove that $A^{\mathcal{K}}$-summability always implies $A^{\mathcal{I^{K}}}$-summability whereas $A^{\mathcal{I}}$-summability not necessarily implies $A^{\mathcal{I^{K}}}$-summability. Finally, we give a condition namely $AP(\mathcal{I},\mathcal{K})$ (which is a natural generalization of the condition $AP$) under which $A^{\mathcal{I}}$-summability implies $A^{\mathcal{I^{K}}}$-summability.
Keywords: ideal, filter, $\mathcal{I}$-convergence, $\mathcal{I^{K}}$-convergence, $A^{\mathcal{I}}$-summa-bility, $A^{\mathcal{I^{K}}}$-summability.
@article{UMJ_2022_8_1_a1,
     author = {Chiranjib Choudhury and Shyamal Debnath},
     title = {On $A^{\mathcal{I^{K}}}${\textendash}summability},
     journal = {Ural mathematical journal},
     pages = {13--22},
     year = {2022},
     volume = {8},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2022_8_1_a1/}
}
TY  - JOUR
AU  - Chiranjib Choudhury
AU  - Shyamal Debnath
TI  - On $A^{\mathcal{I^{K}}}$–summability
JO  - Ural mathematical journal
PY  - 2022
SP  - 13
EP  - 22
VL  - 8
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UMJ_2022_8_1_a1/
LA  - en
ID  - UMJ_2022_8_1_a1
ER  - 
%0 Journal Article
%A Chiranjib Choudhury
%A Shyamal Debnath
%T On $A^{\mathcal{I^{K}}}$–summability
%J Ural mathematical journal
%D 2022
%P 13-22
%V 8
%N 1
%U http://geodesic.mathdoc.fr/item/UMJ_2022_8_1_a1/
%G en
%F UMJ_2022_8_1_a1
Chiranjib Choudhury; Shyamal Debnath. On $A^{\mathcal{I^{K}}}$–summability. Ural mathematical journal, Tome 8 (2022) no. 1, pp. 13-22. http://geodesic.mathdoc.fr/item/UMJ_2022_8_1_a1/

[1] Altinok M., Küçükaslan M., “Ideal limit superior-inferior”, Gazi Univ. J. Sci., 30:1 (2017), 401–411

[2] Banerjee A. K., Paul M., Weak and Weak* ${I^K}$-convergence in Normed Spaces, 2018, 10 pp., arXiv: 1811.06707v1 [math.GN]

[3] Banerjee A. K., Paul M., A Note on $I^K$ and $I^{K^{*}}$-convergence in Topological Spaces, 2018, 10 pp., arXiv: 1807.11772v1 [math.GN]

[4] Das P., Sleziak M., Toma V., “$I^K$-Cauchy functions”, Topology Appl., 173 (2014), 9–27 | DOI | MR | Zbl

[5] Das P., Sengupta S., Supina J., “$I^K$-convergence of sequence of functions”, Math. Slovaca, 69:5 (2019), 1137—1148 | DOI | MR | Zbl

[6] Edely O. H. H., “On some properties of $A^{I}$-summability and $A^{I^*}$-summability”, Azerb. J. Math., 11:1 (2021), 189–200 | MR | Zbl

[7] Edely O. H. H., Mursaleen M., “On statistical $A$-summability”, Math. Comput. Model, 49:3 (2009), 672–680 | DOI | MR | Zbl

[8] Freedman A. R., Sember J. J., “Densities and summability”, Pacific J. Math., 95:2 (1981), 293–305 | DOI | MR | Zbl

[9] Gogola J., Mačaj M., Visnyai T., “On $\mathcal{I}^{(q)}_{c}$-convergence”, Ann. Math. Inform., 38 (2011), 27–36 | MR | Zbl

[10] Jarrah A. M., Malkowsky E., “Ordinary, absolute and strong summability and matrix transformations”, Filomat, 2003, no. 17, 59–78 | DOI | MR | Zbl

[11] Kostyrko P., Mačaj M., Šalát T., Sleziak M., “$\mathcal{I}$-convergence and extremal $\mathcal{I}$-limit points”, Math. Slovaca, 55:4 (2005), 443–464 | MR | Zbl

[12] Kostyrko P., Šalát T., Wilczyński W., “$I$-convergence”, Real Anal. Exch., 26:2 (2000–2001), 669–686 | DOI | MR

[13] Mačaj M., Sleziak M., “$\mathcal{I}^K$-convergence”, Real Anal. Exch., 36:1 (2010–2011), 177–194 | MR

[14] Mursaleen M., “On some new invariant matrix methods of summability”, Q. J. Math., 34:1 (1983), 77–86 | DOI | MR | Zbl

[15] Mursaleen M., Alotaibi A., “On $\mathcal{I}$-convergence in random 2-normed spaces”, Math. Slovaca, 61:6 (2011), 933–940 | DOI | MR | Zbl

[16] Mursaleen M., Mohiuddine S. A., “On ideal convergence in probabilistic normed spaces”, Math. Slovaca, 62:1 (2012), 49–62 | DOI | MR | Zbl

[17] Nabiev A., Pehlivan S., Gürdal M., “On $\mathcal{I}$-Cauchy sequences”, Taiwanese J. Math., 11:2 (2007), 569–576 | DOI | MR | Zbl

[18] Šalát T., Tripathy B. C., Ziman M., “On some properties of $\mathcal{I}$-convergence”, Tatra Mt. Math. Publ., 28:2 (2004), 274–286 | MR

[19] Savaş E., “Generalized asymptotically $\mathcal{I}$-lacunary statistical equivalent of order $\alpha$ for sequences of sets”, Filomat, 31:6 (2017), 1507–1514 | DOI | MR | Zbl

[20] Savaş E., “General inclusion relations for absolute summability”, Math. Inequal. Appl., 8:3 (2005), 521–527 | MR | Zbl

[21] Savaş E., Gürdal M., “Ideal convergent function sequences in random 2-normed spaces”, Filomat, 30:3 (2016), 557–567 | DOI | MR | Zbl

[22] Tripathy B. C., Hazarika B., “Paranorm $I$-convergent sequence spaces”, Math. Slovaca, 59:4 (2009), 485–494 | DOI | MR | Zbl