On $A^{\mathcal{I^{K}}}$--summability
Ural mathematical journal, Tome 8 (2022) no. 1, pp. 13-22

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we introduce and investigate the concept of $A^{\mathcal{I^{K}}}$-summability as an extension of $A^{\mathcal{I^{*}}}$-summability which was recently (2021) introduced by O.H.H. Edely, where $A=(a_{nk})_{n,k=1}^{\infty}$ is a non-negative regular matrix and $\mathcal{I}$ and $\mathcal{K}$ represent two non-trivial admissible ideals in $\mathbb{N}$. We study some of its fundamental properties as well as a few inclusion relationships with some other known summability methods. We prove that $A^{\mathcal{K}}$-summability always implies $A^{\mathcal{I^{K}}}$-summability whereas $A^{\mathcal{I}}$-summability not necessarily implies $A^{\mathcal{I^{K}}}$-summability. Finally, we give a condition namely $AP(\mathcal{I},\mathcal{K})$ (which is a natural generalization of the condition $AP$) under which $A^{\mathcal{I}}$-summability implies $A^{\mathcal{I^{K}}}$-summability.
Keywords: ideal, filter, $\mathcal{I}$-convergence, $\mathcal{I^{K}}$-convergence, $A^{\mathcal{I}}$-summa-bility, $A^{\mathcal{I^{K}}}$-summability.
@article{UMJ_2022_8_1_a1,
     author = {Chiranjib Choudhury and Shyamal Debnath},
     title = {On $A^{\mathcal{I^{K}}}$--summability},
     journal = {Ural mathematical journal},
     pages = {13--22},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2022_8_1_a1/}
}
TY  - JOUR
AU  - Chiranjib Choudhury
AU  - Shyamal Debnath
TI  - On $A^{\mathcal{I^{K}}}$--summability
JO  - Ural mathematical journal
PY  - 2022
SP  - 13
EP  - 22
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UMJ_2022_8_1_a1/
LA  - en
ID  - UMJ_2022_8_1_a1
ER  - 
%0 Journal Article
%A Chiranjib Choudhury
%A Shyamal Debnath
%T On $A^{\mathcal{I^{K}}}$--summability
%J Ural mathematical journal
%D 2022
%P 13-22
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UMJ_2022_8_1_a1/
%G en
%F UMJ_2022_8_1_a1
Chiranjib Choudhury; Shyamal Debnath. On $A^{\mathcal{I^{K}}}$--summability. Ural mathematical journal, Tome 8 (2022) no. 1, pp. 13-22. http://geodesic.mathdoc.fr/item/UMJ_2022_8_1_a1/