Fixed point theorem for multivalued non-self mappings satisfying JS-contraction with an application
Ural mathematical journal, Tome 8 (2022) no. 1, pp. 3-12
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we present some fixed point results for multivalued non-self mappings. We generalize the fixed point theorem due to Altun and Minak [2] by using Jleli and Sameti [9] $\vartheta$-contraction. To validate the results proved here, we provide an appropriate application of our main result.
Keywords:
JS-contraction mapping, multivalued mapping, metric space, non-self mapping, fixed point.
@article{UMJ_2022_8_1_a0,
author = {David Aron and Santosh Kumar},
title = {Fixed point theorem for multivalued non-self mappings satisfying {JS-contraction} with an application},
journal = {Ural mathematical journal},
pages = {3--12},
publisher = {mathdoc},
volume = {8},
number = {1},
year = {2022},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UMJ_2022_8_1_a0/}
}
TY - JOUR AU - David Aron AU - Santosh Kumar TI - Fixed point theorem for multivalued non-self mappings satisfying JS-contraction with an application JO - Ural mathematical journal PY - 2022 SP - 3 EP - 12 VL - 8 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UMJ_2022_8_1_a0/ LA - en ID - UMJ_2022_8_1_a0 ER -
David Aron; Santosh Kumar. Fixed point theorem for multivalued non-self mappings satisfying JS-contraction with an application. Ural mathematical journal, Tome 8 (2022) no. 1, pp. 3-12. http://geodesic.mathdoc.fr/item/UMJ_2022_8_1_a0/