Fixed point theorem for multivalued non-self mappings satisfying JS-contraction with an application
Ural mathematical journal, Tome 8 (2022) no. 1, pp. 3-12 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we present some fixed point results for multivalued non-self mappings. We generalize the fixed point theorem due to Altun and Minak [2] by using Jleli and Sameti [9] $\vartheta$-contraction. To validate the results proved here, we provide an appropriate application of our main result.
Keywords: JS-contraction mapping, multivalued mapping, metric space, non-self mapping, fixed point.
@article{UMJ_2022_8_1_a0,
     author = {David Aron and Santosh Kumar},
     title = {Fixed point theorem for multivalued non-self mappings satisfying {JS-contraction} with an application},
     journal = {Ural mathematical journal},
     pages = {3--12},
     year = {2022},
     volume = {8},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2022_8_1_a0/}
}
TY  - JOUR
AU  - David Aron
AU  - Santosh Kumar
TI  - Fixed point theorem for multivalued non-self mappings satisfying JS-contraction with an application
JO  - Ural mathematical journal
PY  - 2022
SP  - 3
EP  - 12
VL  - 8
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UMJ_2022_8_1_a0/
LA  - en
ID  - UMJ_2022_8_1_a0
ER  - 
%0 Journal Article
%A David Aron
%A Santosh Kumar
%T Fixed point theorem for multivalued non-self mappings satisfying JS-contraction with an application
%J Ural mathematical journal
%D 2022
%P 3-12
%V 8
%N 1
%U http://geodesic.mathdoc.fr/item/UMJ_2022_8_1_a0/
%G en
%F UMJ_2022_8_1_a0
David Aron; Santosh Kumar. Fixed point theorem for multivalued non-self mappings satisfying JS-contraction with an application. Ural mathematical journal, Tome 8 (2022) no. 1, pp. 3-12. http://geodesic.mathdoc.fr/item/UMJ_2022_8_1_a0/

[1] Alghamdi M. A., Berinde V., Shahzad N., “Fixed points of multivalued nonself almost contractions”, J. Appl. Math, 2013 (2013), 621614, 6 pp. | DOI | MR | Zbl

[2] Altun I., Minak G., “An extension of Assad-Kirk's fixed point theorem for multivalued nonself mappings”, Carpathian J. Math., 32:2 (2016), 147–155 https://www.jstor.org/stable/44000101 | DOI | MR | Zbl

[3] Aron D., Kumar S., “Fixed point theorem for a sequence of multivalued nonself mappings in metrically convex metric spaces”, Topol. Algebra Appl., 10 (2022), 1–12 | DOI | MR | Zbl

[4] Assad N. A., Kirk W. A., “Fixed point theorems for set-valued mappings of contractive type”, Pacific J. Math., 43 (1972), 553–562 | DOI | MR

[5] Damjanović B., Samet B., Vetro C., “Common fixed point theorems for multi-valued maps”, Acta Math. Sci. Ser. B Engl. Ed., 32:2 (2012), 818–824 | DOI | MR | Zbl

[6] Hussain N., Parvaneh V., Samet B., Vetro C., “Some fixed point theorems for generalized contractive mappings in complete metric spaces”, Fixed Point Theory Appl., 2015 (2015), 185, 17 pp. | DOI | MR | Zbl

[7] Imdad M., Kumar S., “Rhoades-type fixed-point theorems for a pair of nonself mappings”, Comput. Math. Appl., 46:5–6 (2003), 919–927 | DOI | MR | Zbl

[8] Itoh S., “Multivalued generalized contractions and fixed point theorems”, Comment. Math. Univ. Carolin., 018:2 (1977), 247–258 | MR

[9] Jleli M., Samet B., “A new generalization of the Banach contraction principle”, J. Inequal. Appl., 2014 (2014), 38, 8 pp. | DOI | MR | Zbl

[10] Kreyszig E., Introductory Functional Analysis with Applications, John Wiley Sons. Inc., NY, 1978, 688 pp. | MR | Zbl

[11] Kumar S., Rugumisa T., Imdad M., “Common fixed points in metrically convex partial metric spaces”, Konuralp J. Math., 5:2 (2017), 56–71 | MR

[12] Maleknejad K., Torabi P., “Application of fixed point method for solving nonlinear Volterra–Hammerstein integral equation”, U.P.B. Sci. Bull. Ser. A, 74:1 (2012), 45–56 | MR | Zbl

[13] Nadler S. B., Jr., “Multi-valued contraction mappings”, Pacific. J. Math., 30:2 (1969), 475–488 | DOI | MR | Zbl