Mots-clés : Antipodal cover
@article{UMJ_2021_7_2_a9,
author = {Ludmila Yu. Tsiovkina},
title = {On a class of edge-transitive distance-regular antipodal covers of complete graphs},
journal = {Ural mathematical journal},
pages = {136--158},
year = {2021},
volume = {7},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UMJ_2021_7_2_a9/}
}
Ludmila Yu. Tsiovkina. On a class of edge-transitive distance-regular antipodal covers of complete graphs. Ural mathematical journal, Tome 7 (2021) no. 2, pp. 136-158. http://geodesic.mathdoc.fr/item/UMJ_2021_7_2_a9/
[1] Aschbacher M., Finite Group Theory, 2nd, Cambridge University Press, Cambridge, 2000, 305 pp. | DOI | MR | Zbl
[2] Blokhuis A., Brouwer A. E., “Geodetic graphs of diameter two”, Geom. Dedicata, 25 (1988), 527–533 | DOI | MR | Zbl
[3] Brouwer A E., Cohen A. M., Neumaier A., Distance–Regular Graphs, Springer-Verlag, Berlin etc, 1989, 494 pp. | DOI | MR | Zbl
[4] Cameron P. J., Permutation Groups, Cambridge Univ. Press, Cambridge, 1999, 220 pp. | DOI | MR | Zbl
[5] Gardiner A., “Antipodal covering graphs”, J. Comb. Theory B., 16:3 (1974), 255–273 | DOI | MR | Zbl
[6] Gavrilyuk A.L., Makhnev A.A., “Geodesic graphs with homogeneity conditions”, Dokl. Math., 78 (2008), 743–745 | DOI | MR | Zbl
[7] Godsil C. D., “Covers of complete graphs”, Adv. Stud. Pure Math., 24 (1996), 137–163 | DOI | MR | Zbl
[8] Godsil C. D., Hensel A. D. “Distance regular covers of the complete graph”, J. Combin. Theory Ser. B., 56 (1992), 205–238 | DOI | MR | Zbl
[9] Godsil C. D., Liebler R. A., Praeger C. E., “Antipodal distance transitive covers of complete graphs”, Europ. J. Comb., 19:4 (1998), 455–478 | DOI | MR | Zbl
[10] Hoffman A. J., Singleton R. R., “Moore graphs with diameter 2 and 3”, IEEE Xplore. IBM J. of Research and Development, 5:4 (1960), 497–504 | DOI | MR
[11] Kantor W. M., “$k$-homogeneous groups”, Math. Z., 124 (1972), 261–265 | DOI | MR | Zbl
[12] Kantor W. M., “Moore geometries and rank 3 groups having $\mu=1$”, Q. J. Math., 28:3 (1977), 309–328 | DOI | MR | Zbl
[13] Mačaj M., Širáň J., “Search for properties of the missing Moore graph”, Linear Algebra Appl., 432:9 (2010), 2381–2398 | DOI | MR | Zbl
[14] Makhnev A. A., Paduchikh D. V., Tsiovkina L. Yu., “Edge-symmetric distance-regular coverings of complete graphs: the almost simple case”, Algebra Logic, 57:2 (2018), 141–152 | DOI | MR | Zbl
[15] Makhnev A. A., Tsiovkina L. Yu., “Arc-transitive antipodal distance-regular graphs of diameter three related to {$PSL_{d}(q)$}”, Sib. Elektron. Mat. Izv., 13 (2016), 1339–1345. | DOI | MR | Zbl
[16] Makhnev A. A., Tsiovkina L. Yu., Antipodal Distance-Regular Graphs and Their Automorphisms, Sobolev Institute of Mathematics Publishing House, Novosibirsk, 2018, 196 pp. (in Russian)
[17] Makhnev A. A., Paduchikh D. V., “Automorphisms of Aschbacher graphs”, Algebra Logic, 40:2 (2001), 69–74 | DOI | MR | Zbl
[18] Mazurov V. D., “Minimal permutation representations of finite simple classical groups. Special linear, symplectic, and unitary groups”, Algebra Logic, 32:3 (1993), 142—153 | DOI | MR | Zbl
[19] Tsiovkina L. Yu., “Two new infinite families of arc-transitive antipodal distance-regular graphs of diameter three with $\lambda=\mu$ related to groups $Sz(q)$ and ${^2}G_2(q)$”, J. Algebr. Comb., 41:4 (2015), 1079–1087 | DOI | MR | Zbl
[20] Tsiovkina L. Yu., “Arc-transitive antipodal distance-regular covers of complete graphs related to $SU_3(q)$”, Discrete Math., 340:2 (2017), 63–71 | DOI | MR | Zbl
[21] Tsiovkina L. Yu., “On affine distance-regular covers of complete graphs”, Sib. Elektron. Mat. Izv., 12 (2015), 998—1005 (in Russian) | DOI | MR | Zbl
[22] Tsiovkina L. Yu., “Arc-transitive groups of automorphisms of antipodal distance-regular graphs of diameter 3 in affine case”, Sib. Elektron. Mat. Izv., 17 (2020), 445—495 (in Russian) | DOI | MR | Zbl