On a class of edge-transitive distance-regular antipodal covers of complete graphs
Ural mathematical journal, Tome 7 (2021) no. 2, pp. 136-158 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is devoted to the problem of classification of edge-transitive distance-regular antipodal covers of complete graphs. This extends the classification of those covers that are arc-transitive, which has been settled except for some tricky cases that remain to be considered, including the case of covers satisfying condition $c_2=1$ (which means that every two vertices at distance 2 have exactly one common neighbour). Here it is shown that an edge-transitive distance-regular antipodal cover of a complete graph with $c_2=1$ is either the second neighbourhood of a vertex in a Moore graph of valency 3 or 7, or a Mathon graph, or a half-transitive graph whose automorphism group induces an affine $2$-homogeneous group on the set of its fibres. Moreover, distance-regular antipodal covers of complete graphs with $c_2=1$ that admit an automorphism group acting $2$-homogeneously on the set of fibres (which turns out to be an approximation of the property of edge-transitivity of such cover) are described. A well-known correspondence between distance-regular antipodal covers of complete graphs with $c_2=1$ and geodetic graphs of diameter two that can be viewed as underlying graphs of certain Moore geometries, allows us to effectively restrict admissible automorphism groups of covers under consideration by combining Kantor's classification of involutory automorphisms of these geometries together with the classification of finite 2-homogeneous permutation groups.
Keywords: Distance-regular graph, Geodetic graph, Arc-transitive graph, Edge-transitive graph, 2-transitive group, 2-homogeneous group.
Mots-clés : Antipodal cover
@article{UMJ_2021_7_2_a9,
     author = {Ludmila Yu. Tsiovkina},
     title = {On a class of edge-transitive distance-regular antipodal covers of complete graphs},
     journal = {Ural mathematical journal},
     pages = {136--158},
     year = {2021},
     volume = {7},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2021_7_2_a9/}
}
TY  - JOUR
AU  - Ludmila Yu. Tsiovkina
TI  - On a class of edge-transitive distance-regular antipodal covers of complete graphs
JO  - Ural mathematical journal
PY  - 2021
SP  - 136
EP  - 158
VL  - 7
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UMJ_2021_7_2_a9/
LA  - en
ID  - UMJ_2021_7_2_a9
ER  - 
%0 Journal Article
%A Ludmila Yu. Tsiovkina
%T On a class of edge-transitive distance-regular antipodal covers of complete graphs
%J Ural mathematical journal
%D 2021
%P 136-158
%V 7
%N 2
%U http://geodesic.mathdoc.fr/item/UMJ_2021_7_2_a9/
%G en
%F UMJ_2021_7_2_a9
Ludmila Yu. Tsiovkina. On a class of edge-transitive distance-regular antipodal covers of complete graphs. Ural mathematical journal, Tome 7 (2021) no. 2, pp. 136-158. http://geodesic.mathdoc.fr/item/UMJ_2021_7_2_a9/

[1] Aschbacher M., Finite Group Theory, 2nd, Cambridge University Press, Cambridge, 2000, 305 pp. | DOI | MR | Zbl

[2] Blokhuis A., Brouwer A. E., “Geodetic graphs of diameter two”, Geom. Dedicata, 25 (1988), 527–533 | DOI | MR | Zbl

[3] Brouwer A E., Cohen A. M., Neumaier A., Distance–Regular Graphs, Springer-Verlag, Berlin etc, 1989, 494 pp. | DOI | MR | Zbl

[4] Cameron P. J., Permutation Groups, Cambridge Univ. Press, Cambridge, 1999, 220 pp. | DOI | MR | Zbl

[5] Gardiner A., “Antipodal covering graphs”, J. Comb. Theory B., 16:3 (1974), 255–273 | DOI | MR | Zbl

[6] Gavrilyuk A.L., Makhnev A.A., “Geodesic graphs with homogeneity conditions”, Dokl. Math., 78 (2008), 743–745 | DOI | MR | Zbl

[7] Godsil C. D., “Covers of complete graphs”, Adv. Stud. Pure Math., 24 (1996), 137–163 | DOI | MR | Zbl

[8] Godsil C. D., Hensel A. D. “Distance regular covers of the complete graph”, J. Combin. Theory Ser. B., 56 (1992), 205–238 | DOI | MR | Zbl

[9] Godsil C. D., Liebler R. A., Praeger C. E., “Antipodal distance transitive covers of complete graphs”, Europ. J. Comb., 19:4 (1998), 455–478 | DOI | MR | Zbl

[10] Hoffman A. J., Singleton R. R., “Moore graphs with diameter 2 and 3”, IEEE Xplore. IBM J. of Research and Development, 5:4 (1960), 497–504 | DOI | MR

[11] Kantor W. M., “$k$-homogeneous groups”, Math. Z., 124 (1972), 261–265 | DOI | MR | Zbl

[12] Kantor W. M., “Moore geometries and rank 3 groups having $\mu=1$”, Q. J. Math., 28:3 (1977), 309–328 | DOI | MR | Zbl

[13] Mačaj M., Širáň J., “Search for properties of the missing Moore graph”, Linear Algebra Appl., 432:9 (2010), 2381–2398 | DOI | MR | Zbl

[14] Makhnev A. A., Paduchikh D. V., Tsiovkina L. Yu., “Edge-symmetric distance-regular coverings of complete graphs: the almost simple case”, Algebra Logic, 57:2 (2018), 141–152 | DOI | MR | Zbl

[15] Makhnev A. A., Tsiovkina L. Yu., “Arc-transitive antipodal distance-regular graphs of diameter three related to {$PSL_{d}(q)$}”, Sib. Elektron. Mat. Izv., 13 (2016), 1339–1345. | DOI | MR | Zbl

[16] Makhnev A. A., Tsiovkina L. Yu., Antipodal Distance-Regular Graphs and Their Automorphisms, Sobolev Institute of Mathematics Publishing House, Novosibirsk, 2018, 196 pp. (in Russian)

[17] Makhnev A. A., Paduchikh D. V., “Automorphisms of Aschbacher graphs”, Algebra Logic, 40:2 (2001), 69–74 | DOI | MR | Zbl

[18] Mazurov V. D., “Minimal permutation representations of finite simple classical groups. Special linear, symplectic, and unitary groups”, Algebra Logic, 32:3 (1993), 142—153 | DOI | MR | Zbl

[19] Tsiovkina L. Yu., “Two new infinite families of arc-transitive antipodal distance-regular graphs of diameter three with $\lambda=\mu$ related to groups $Sz(q)$ and ${^2}G_2(q)$”, J. Algebr. Comb., 41:4 (2015), 1079–1087 | DOI | MR | Zbl

[20] Tsiovkina L. Yu., “Arc-transitive antipodal distance-regular covers of complete graphs related to $SU_3(q)$”, Discrete Math., 340:2 (2017), 63–71 | DOI | MR | Zbl

[21] Tsiovkina L. Yu., “On affine distance-regular covers of complete graphs”, Sib. Elektron. Mat. Izv., 12 (2015), 998—1005 (in Russian) | DOI | MR | Zbl

[22] Tsiovkina L. Yu., “Arc-transitive groups of automorphisms of antipodal distance-regular graphs of diameter 3 in affine case”, Sib. Elektron. Mat. Izv., 17 (2020), 445—495 (in Russian) | DOI | MR | Zbl