On hop domination number of some generalized graph structures
Ural mathematical journal, Tome 7 (2021) no. 2, pp. 121-135

Voir la notice de l'article provenant de la source Math-Net.Ru

A subset $ H \subseteq V (G) $ of a graph $G$ is a hop dominating set (HDS) if for every ${v\in (V\setminus H)}$ there is at least one vertex $u\in H$ such that $d(u,v)=2$. The minimum cardinality of a hop dominating set of $G$ is called the hop domination number of $G$ and is denoted by $\gamma_{h}(G)$. In this paper, we compute the hop domination number for triangular and quadrilateral snakes. Also, we analyse the hop domination number of graph families such as generalized thorn path, generalized ciliates graphs, glued path graphs and generalized theta graphs.
Keywords: hop domination number, snake graphs, theta graphs, generalized thorn path.
@article{UMJ_2021_7_2_a8,
     author = {S. Shanmugavelan and C. Natarajan},
     title = {On hop domination number of some generalized graph structures},
     journal = {Ural mathematical journal},
     pages = {121--135},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2021_7_2_a8/}
}
TY  - JOUR
AU  - S. Shanmugavelan
AU  - C. Natarajan
TI  - On hop domination number of some generalized graph structures
JO  - Ural mathematical journal
PY  - 2021
SP  - 121
EP  - 135
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UMJ_2021_7_2_a8/
LA  - en
ID  - UMJ_2021_7_2_a8
ER  - 
%0 Journal Article
%A S. Shanmugavelan
%A C. Natarajan
%T On hop domination number of some generalized graph structures
%J Ural mathematical journal
%D 2021
%P 121-135
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UMJ_2021_7_2_a8/
%G en
%F UMJ_2021_7_2_a8
S. Shanmugavelan; C. Natarajan. On hop domination number of some generalized graph structures. Ural mathematical journal, Tome 7 (2021) no. 2, pp. 121-135. http://geodesic.mathdoc.fr/item/UMJ_2021_7_2_a8/