@article{UMJ_2021_7_2_a8,
author = {S. Shanmugavelan and C. Natarajan},
title = {On hop domination number of some generalized graph structures},
journal = {Ural mathematical journal},
pages = {121--135},
year = {2021},
volume = {7},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UMJ_2021_7_2_a8/}
}
S. Shanmugavelan; C. Natarajan. On hop domination number of some generalized graph structures. Ural mathematical journal, Tome 7 (2021) no. 2, pp. 121-135. http://geodesic.mathdoc.fr/item/UMJ_2021_7_2_a8/
[1] Ayyaswamy S. K., Natarajan C., Hop Domination in Graphs, 2015 | MR
[2] Ayyaswamy S. K., Krishnakumari B., Natarajan C., Venkatakrishnan Y. B., “Bounds on the hop domination number of a tree”, Proc. Math. Sci., 125:4 (2015), 449–455 | DOI | MR | Zbl
[3] Balakrishnan R., Ranganathan K., A Textbook of Graph Theory, 2nd, Springer, NY, 2012, 292 pp. | DOI | MR | Zbl
[4] Durgun D. D., Lökçü B., “Weak and strong domination in thorn graphs”, Asian-Eur. J. Math., 13:4 (2020), 2050071 | DOI | MR | Zbl
[5] Gallian J. A., “A dynamic survey of graph Labeling”, Electron. J. Combin., 2021, DS6, 1–576 | DOI | MR
[6] Getchial Pon Packiavathi P., Balamurugan S., Gnanajothi R. B., “Hop domination number of caterpillar graphs”, Adv. Math. Sci. J., 9:5 (2020), 2739–2748 | DOI
[7] Gutman I., “Distance in thorny graph”, Publ. Inst. Math. (Beograd) (N.S.), 63:83 (1998), 31–36 http://eudml.org/doc/258067 | MR | Zbl
[8] Haynes T. W., Hedetniemi S. T., Henning M. A., Topics in Domination in Graphs, Springer, Cham, 2020, 545 pp. | DOI | MR | Zbl
[9] Haynes T. W., Hedetniemi S. T., Slater P. J., Fundamentals of Domination in Graphs, CRC Press, Boca Raton, 1998, 464 pp. | DOI | MR
[10] Haynes T. W., Hedetniemi S. T., Slater P. J., Domination in Graphs–Advanced Topics, CRC Press, Boca Raton, 1998, 520 pp. | DOI | MR
[11] Henning M. A., Rad N. J., “On 2-step and hop dominating sets in graphs”, Graphs Combin., 33 (2017), 913—927 | DOI | MR | Zbl
[12] Henning M. A., Pal S., Pradhan D., “Algorithm and hardness results on hop domination in graphs”, Inform. Process. Lett., 153 (2020), 1–8 | DOI | MR
[13] Natarajan C., Ayyaswamy S. K., “Hop domination in graphs-II”, An. St. Univ. Ovidius Constanta, 23:2 (2015), 187–199 | DOI | MR | Zbl
[14] Natarajan C., Ayyaswamy S. K., Sathiamoorthy G., “A note on hop domination number of some special families of graphs”, Int. J. Pure Appl. Math., 119:12f (2018), 14165–14171 https://www.acadpubl.eu/hub/2018-119-12/articles/6/1314.pdf
[15] Pabilona Y. M., Rara H. M., “Connected hop domination in graphs under some binary operations”, Asian-Eur. J. Math., 11:5 (2018), 1–11 | DOI | MR
[16] Rad N. J., Poureidi A., “On hop Roman domination in trees”, Comm. Combin. Optim., 4:2 (2019), 201–208 | DOI | MR | Zbl
[17] Rakim R. C., Saromines Ch. J. C., Rara H. M., “Perfect hop domination in graph”, Appl. Math. Sci., 12:13 (2018), 635–649 | DOI
[18] Salasalan G. P., Canoy S. R., Jr, “Global hop domination numbers of graphs”, Eur. J. Pure Appl. Math., 14:1 (2021), 112–125 | DOI | MR
[19] Sathiyamoorthy G., Janakiraman T. N., “Graceful labeling of generalized theta graphs”, Nat. Acad. Sci. Lett., 41:2 (2018), 121–122 | DOI | MR
[20] Shanmugavelan S., Natarajan C., “An updated survey on distance-based domination parameters in graphs”, Asia Math., 4:2 (2020), 134–149 http://www.asiamath.org/article/vol4iss2/AM-2008-4207.pdf