Carleman's formula of a solutions of the Poisson equation in bounded domain
Ural mathematical journal, Tome 7 (2021) no. 2, pp. 110-120 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We suggest an explicit continuation formula for a solution to the Cauchy problem for the Poisson equation in a domain from its values and values of its normal derivative on a part of the boundary. We construct the continuation formula of this problem based on the Carleman-Yarmuhamedov function method.
Keywords: ill-posed problem, regular solution, Carleman–Yarmuhamedov function, Green's formula, Mittag–Leffler entire function.
Mots-clés : Poisson equations, Carleman formula
@article{UMJ_2021_7_2_a7,
     author = {Ermamat N. Sattorov and Zuxro E. Ermamatova},
     title = {Carleman's formula of a solutions of the {Poisson} equation in bounded domain},
     journal = {Ural mathematical journal},
     pages = {110--120},
     year = {2021},
     volume = {7},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2021_7_2_a7/}
}
TY  - JOUR
AU  - Ermamat N. Sattorov
AU  - Zuxro E. Ermamatova
TI  - Carleman's formula of a solutions of the Poisson equation in bounded domain
JO  - Ural mathematical journal
PY  - 2021
SP  - 110
EP  - 120
VL  - 7
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UMJ_2021_7_2_a7/
LA  - en
ID  - UMJ_2021_7_2_a7
ER  - 
%0 Journal Article
%A Ermamat N. Sattorov
%A Zuxro E. Ermamatova
%T Carleman's formula of a solutions of the Poisson equation in bounded domain
%J Ural mathematical journal
%D 2021
%P 110-120
%V 7
%N 2
%U http://geodesic.mathdoc.fr/item/UMJ_2021_7_2_a7/
%G en
%F UMJ_2021_7_2_a7
Ermamat N. Sattorov; Zuxro E. Ermamatova. Carleman's formula of a solutions of the Poisson equation in bounded domain. Ural mathematical journal, Tome 7 (2021) no. 2, pp. 110-120. http://geodesic.mathdoc.fr/item/UMJ_2021_7_2_a7/

[1] Aizenberg L. A., Tarkhanov N. N., “An abstract Carleman formula”, Dokl. Math., 37:1 (1988), 235–238 | MR | Zbl

[2] Aizenberg L. A., Carleman's Formulas in Complex Analysis. Theory and Applications, Math. Applications, 244, Springer, Dordrecht, 1993, 299 pp. | DOI | MR

[3] Alessandrini G., Rondi L., Rosset E., and Vessella S., “The stability for the Cauchy problem for elliptic equations”, Inverse problems, 25:12 (2009), 123004 | DOI | MR | Zbl

[4] Arbuzov E. V., Bukhgeim A. L., “The Carleman's formula for the Maxwell's equations on a plane”, Sib. Elektron. Mat. Izv., 2008, no. 5, 448–455 (in Russian) | MR | Zbl

[5] {Belgacem F. B.} Why is the Cauchy problem severely ill-posed?, Inverse problems, 23:2 (2007), 823–836 | DOI | MR | Zbl

[6] Bers L., John F., Schechter M., Partial Differential Equations, Interscience, NY, 1964, 343 pp. | MR | Zbl

[7] Blum J., Numerical Simulation and Optimal Control in Plasma Physics With Applications to Tokamaks, John Wiley and Sons Inc., NY, 1989, 363 pp. | MR

[8] Carleman T., Les Founctions Quasi Analitiques, Gauthier-Villars, Paris, 1926, 115 pp. (in French)

[9] Chen G., Zhou J., Boundary Element Methods., Academic Press, London etc., 1992, 646 pp. | MR | Zbl

[10] Colli-Franzone P., Guerri L., Tentoni S., Viganotti C., Baruffi S., Spaggiari S., Taccardi B., “A mathematical procedure for solving the inverse potential problem of electrocardiography. analysis of the time-space accuracy from in vitro experimental data”, Math. Biosci., 77:1–2 (1985), 353–396 | DOI | MR | Zbl

[11] Dzhrbashyan M. M., {Integral'nye preobrazovaniya i predstavleniya funkcij v kompleksnoj oblasti} [Integral Transformations and Representations of Functions in a Compkjoplex Domain], Nauka, M., 1966, 670 pp. (in Russian) | MR

[12] Ermamatova Z. E., “Carleman's formula of a solution of the Poisson equation”, Int. J. Integrated Education, 4:7 (2021), 112–117 | MR

[13] Fasino D., Inglese G., “An inverse Robin problem for Laplace's equation: theoretical results and numerical methods”, Inverse problems, 15:1 (1999), 41–48. | DOI | MR | Zbl

[14] Fok V. A., Kuni F. M., “On the introduction of a 'suppressing' function in dispersion relations”, Dokl. Akad. Nauk SSSR, 127:6 (1959), 1195–1198 (in Russian) | Zbl

[15] Gilbarg D., Trudinger N. S., Elliptic Partial Differential Equations of Second Order, Springer–Verlag, Berlin-Heidelberg-NY-Tokyo, 1983, 513 pp. | MR | Zbl

[16] Goluzin G. M., Krylov V. I., “A generalized Carleman formula and its application to analytic continuation of functions”, Mat. Sb., 40:2 (1933), 144–149 (in Russian)

[17] Hadamard J., Lectures on Cauchy's Problem in Linear Partial Differential Equations, Yale University Press, New Haven, 1923, 334 pp. | MR

[18] Hu X., Mu L., Ye X., “A simple finite element method of the Cauchy problem for Poisson equation”, Int. J. Numer. Anal. Model., 14:4–5 (2017), 591–603 | MR | Zbl

[19] Inglese G., “An inverse problem in corrosion detection”, Inverse problems, 13:4 (1997), 977–994 | DOI | MR | Zbl

[20] Ivanov V. K., “Cauchy problem for the Laplace equation in an infinite strip”, Differ. Uravn., 1:1 (1965), 131–136 (in Russian) | MR | Zbl

[21] Kabanikhin S. I., Inverse and Ill-Posed Problems: Theory and Applications, De Gruyter, Berlin, 2011, 459 pp. | DOI | MR

[22] Lattès R., Lions J.-L., The Method of Quasi-Reversibility: Applications to Partial Differential Equations, Modern Analytic and Computational Methods in Science and Mathematics, 18, American Elsevier Pub. Co., NY, 1969, 388 pp. | MR

[23] Lavrentiev M. M., Some Improperly Posed Problems of Mathematical Physics, Berlin, Springer, 1967, 76 pp. | DOI | Zbl

[24] Lavrentiev M. M., “On Cauchy problem for linear elliptical equations of the second order”, Dokl. Akad. Nauk SSSR, 112:2 (1957), 195–197 (in Russian) | MR | Zbl

[25] Makhmudov O. I., “The Cauchy problem for a system of equations of the theory of elasticity and thermoelasticity in space”, Russian Math. (Iz. VUZ), 48:2 (2004), 40–50 | MR | Zbl

[26] Makhmudov O., Niyozov I., Tarkhanov N., “The Cauchy problem of couple-stress elasticity”, Contemporary Math., 455 (2008), 297–310 | DOI | MR | Zbl

[27] Makhmudov K. O., Makhmudov O. I., Tarkhanov N., “Equations of Maxwell type”, J. Math. Anal. App., 378:1 (2011), 64–75 | DOI | MR | Zbl

[28] Mergelyan S. N., “Harmonic approximation and approximate solution of the Cauchy problem for the Laplace equation”, Uspekhi Mat. Nauk, 11:5 (1956), 3–26 | MR | Zbl

[29] Miranda C., Partial Differential Equations of Elliptic Type, Springer, Berlin, Heidelberg, NY, 1970, 370 pp. | DOI | MR | Zbl

[30] Peicheva A. S., “Regularization of the Cauchy problem for elliptic operators”, J. Sibirian Federal University. Math. Phy., 2 (2018), 191–193 | DOI | MR | Zbl

[31] Sattorov E. N., “Regularization of the solution of the Cauchy problem for the generalized Moisil-Theodoresco system”, Diff. Equat., 44 (2008), 1136—1146 | DOI | MR | Zbl

[32] Sattorov E. N., “Continuation of a solution to a homogeneous system of Maxwell equations”, Russian Math. (Iz. VUZ), 52:8 (2008), 65—69 | DOI | MR | Zbl

[33] Sattorov E. N., “On the continuation of the solutions of a generalized Cauchy-Riemann system in space”, Math. Notes, 85:5 (2009), 733–745 | DOI | MR | Zbl

[34] Sattorov E. N., “Regularization of the solution of the Cauchy problem for the system of Maxwell equations in an unbounded domain”, Math. Notes, 86:6 (2009), 422–431 | DOI | MR | Zbl

[35] Sattorov E. N., “Reconstruction of solutions to a generalized Moisil–Teodorescu system in a spatial domain from their values on a part of the boundary”, Russian Math., 55:1 (2011), 62—73 | DOI | MR | Zbl

[36] Sattorov E. N., Ermamatova Z. E., “Recovery of solutions to homogeneous system of Maxwell's equations with prescribed values on a part of the boundary of domain”, Russian Math., 63:2 (2019), 35—43 | DOI | MR | Zbl

[37] Sattorov E. N., Ermamatova F. E., “Carleman's formula for solutions of the generalized Cauchy–Riemann system in multidimensional spatial domain”, Contem. Problems in Mathematics and Physics, 65:1 (2019), 95–108 | DOI | MR

[38] Sattorov E. N., Ermamatova F. E., “On continuation of solutions of generalized Cauchy–Riemann system in an unbounded subdomain of multidimensional space”, Russian Math., 65:2 (2021), 22–38 | DOI | MR | Zbl

[39] Sattorov E. N., Ermamatova F. E., “Cauchy problem for a generalized Cauchy–Riemann system in a multidimensional bounded spatial domain”, Diff. Equat., 57:1 (2021), 86–99 | DOI | MR | Zbl

[40] Sattorov E. N., Mardanov D. A., “The Cauchy problem for the system of Maxwell equations”, Siberian Math. J., 44:4 (2003), 671–679 | DOI | MR | Zbl

[41] Tarkhanov N. N., “The Carleman matrix for elliptic systems”, Dokl. Akad. Nauk SSSR, 284:2 (1985), 294–297 (in Russian) | MR | Zbl

[42] Tarkhanov N. N., The Cauchy Problem for Solutions of Elliptic Equations, Akad. Verl., Berlin, 1995, 479 pp. | MR | Zbl

[43] Tikhonov A. N., “On the solution of ill-posed problems and the method of regularization”, Dokl. Akad. Nauk SSSR, 151:3 (1963), 501–504 (in Russian) | MR | Zbl

[44] Tikhonov A. N., Arsenin V. Y., Solutions of Ill-Posed Problems, John Wiley Sons, NY, 1977 | MR | Zbl

[45] Yarmukhamedov Sh., “On the Cauchy problem for Laplace's equation”, Dokl. Akad. Nauk SSSR, 235:2 (1977), 281—283 (in Russian) | MR | Zbl

[46] Yarmukhamedov Sh., “Continuing solutions to the Helmholtz equation”, Doklady Math., 56:3 (1997), 887–890 | MR | Zbl

[47] Yarmukhamedov Sh., “A Carleman function and the Cauchy problem for the Laplace equation”, Sib. Math. J., 45:3 (2004), 580–595 | DOI | MR | Zbl

[48] Yarmukhamedov Sh., “Representation of Harmonic Functions as Potentials and the Cauchy Problem”, Math. Notes, 83:5 (2008), 693–706 | DOI | MR | Zbl