Note on super $(a,1)-P_{3}$-antimagic total labeling of star $S_n$
Ural mathematical journal, Tome 7 (2021) no. 2, pp. 86-93
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $G=(V, E)$ be a simple graph and $H$ be a subgraph of $G$. Then $G$ admits an $H$-covering, if every edge in $E(G)$ belongs to at least one subgraph of $G$ that is isomorphic to $H$. An $(a,d)-H$-antimagic total labeling of $G$ is bijection $f:V(G)\cup E(G)\rightarrow \{1, 2, 3,\dots, |V(G)| + |E(G)|\}$ such that for all subgraphs $ H'$ of $G$ isomorphic to $H$, the $H'$ weights $w(H') =\sum_{v\in V(H')} f (v) + \sum_{e\in E(H')} f (e)$ constitute an arithmetic progression $\{a, a + d, a + 2d, \dots , a + (n- 1)d\}$, where $a$ and $d$ are positive integers and $n$ is the number of subgraphs of $G$ isomorphic to $H$. The labeling $f$ is called a super $(a, d)-H$-antimagic total labeling if $f(V(G))=\{1, 2, 3,\dots, |V(G)|\}.$ In [5], David Laurence and Kathiresan posed a problem that characterizes the super $ (a, 1)-P_{3}$-antimagic total labeling of Star $S_{n},$ where $n=6,7,8,9.$ In this paper, we completely solved this problem.
Keywords:
$H$-covering, super $(a,d)-H$-antimagic, star.
@article{UMJ_2021_7_2_a5,
author = {S. Rajkumar and M. Nalliah and Madhu Venkataraman},
title = {Note on super $(a,1)-P_{3}$-antimagic total labeling of star $S_n$},
journal = {Ural mathematical journal},
pages = {86--93},
publisher = {mathdoc},
volume = {7},
number = {2},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UMJ_2021_7_2_a5/}
}
TY - JOUR
AU - S. Rajkumar
AU - M. Nalliah
AU - Madhu Venkataraman
TI - Note on super $(a,1)-P_{3}$-antimagic total labeling of star $S_n$
JO - Ural mathematical journal
PY - 2021
SP - 86
EP - 93
VL - 7
IS - 2
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/UMJ_2021_7_2_a5/
LA - en
ID - UMJ_2021_7_2_a5
ER -
S. Rajkumar; M. Nalliah; Madhu Venkataraman. Note on super $(a,1)-P_{3}$-antimagic total labeling of star $S_n$. Ural mathematical journal, Tome 7 (2021) no. 2, pp. 86-93. http://geodesic.mathdoc.fr/item/UMJ_2021_7_2_a5/