Note on super $(a,1)-P_{3}$-antimagic total labeling of star $S_n$
Ural mathematical journal, Tome 7 (2021) no. 2, pp. 86-93 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $G=(V, E)$ be a simple graph and $H$ be a subgraph of $G$. Then $G$ admits an $H$-covering, if every edge in $E(G)$ belongs to at least one subgraph of $G$ that is isomorphic to $H$. An $(a,d)-H$-antimagic total labeling of $G$ is bijection $f:V(G)\cup E(G)\rightarrow \{1, 2, 3,\dots, |V(G)| + |E(G)|\}$ such that for all subgraphs $ H'$ of $G$ isomorphic to $H$, the $H'$ weights $w(H') =\sum_{v\in V(H')} f (v) + \sum_{e\in E(H')} f (e)$ constitute an arithmetic progression $\{a, a + d, a + 2d, \dots , a + (n- 1)d\}$, where $a$ and $d$ are positive integers and $n$ is the number of subgraphs of $G$ isomorphic to $H$. The labeling $f$ is called a super $(a, d)-H$-antimagic total labeling if $f(V(G))=\{1, 2, 3,\dots, |V(G)|\}.$ In [5], David Laurence and Kathiresan posed a problem that characterizes the super $ (a, 1)-P_{3}$-antimagic total labeling of Star $S_{n},$ where $n=6,7,8,9.$ In this paper, we completely solved this problem.
Keywords: $H$-covering, super $(a,d)-H$-antimagic, star.
@article{UMJ_2021_7_2_a5,
     author = {S. Rajkumar and M. Nalliah and Madhu Venkataraman},
     title = {Note on super $(a,1)-P_{3}$-antimagic total labeling of star $S_n$},
     journal = {Ural mathematical journal},
     pages = {86--93},
     year = {2021},
     volume = {7},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2021_7_2_a5/}
}
TY  - JOUR
AU  - S. Rajkumar
AU  - M. Nalliah
AU  - Madhu Venkataraman
TI  - Note on super $(a,1)-P_{3}$-antimagic total labeling of star $S_n$
JO  - Ural mathematical journal
PY  - 2021
SP  - 86
EP  - 93
VL  - 7
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UMJ_2021_7_2_a5/
LA  - en
ID  - UMJ_2021_7_2_a5
ER  - 
%0 Journal Article
%A S. Rajkumar
%A M. Nalliah
%A Madhu Venkataraman
%T Note on super $(a,1)-P_{3}$-antimagic total labeling of star $S_n$
%J Ural mathematical journal
%D 2021
%P 86-93
%V 7
%N 2
%U http://geodesic.mathdoc.fr/item/UMJ_2021_7_2_a5/
%G en
%F UMJ_2021_7_2_a5
S. Rajkumar; M. Nalliah; Madhu Venkataraman. Note on super $(a,1)-P_{3}$-antimagic total labeling of star $S_n$. Ural mathematical journal, Tome 7 (2021) no. 2, pp. 86-93. http://geodesic.mathdoc.fr/item/UMJ_2021_7_2_a5/

[1] Gallian J. A., “A dynamic survey of graph labelling”, The Electronic J. Comb., 2017, no. DS6, 1–576 | DOI | MR

[2] Gutiénrez A., Lladó A., “Magic coverings”, J. Combin. Math. Combin. Comput., 55 (2005), 43–56 | MR | Zbl

[3] Inayah N., Salman A.N.M., Simanjuntak R., “On $(a, d)-H$-antimagic coverings of graphs”, J. Combin. Math. Combin. Comput., 71 (2009), 273–281 | MR | Zbl

[4] Kotzig A., Rosa A., “Magic valuations of finite graph”, Canad. Math. Bull., 13:4 (1970), 451–461 | DOI | MR | Zbl

[5] Laurence S. D., Kathiresan K. M., “On super $(a, d)-P_h$-antimagic total labeling of Stars”, AKCE J. Graphs Combin., 12 (2015), 54–58 | DOI | MR | Zbl

[6] Simanjuntak R., Bertault F., Miller M., “Two new $(a, d)$-antimagic graph Labelings”, Proc. Eleventh Australas. Workshop Combin. Alg. (AWOCA), Hunter Valley, Australia, 2000, 179–189

[7] Sugeng K. A., Miller M., Slamin, Bača M., “$(a, d)$-edge-antimagic total labelings of caterpillars”, Lecture Notes in Comput. Sci., Combinatorial Geometry and Graph Theory. IJCCGGT 2003, v. 3330, eds. Akiyama J., Baskoro E.T., Kano M., 2003, 169-180 | DOI | MR