Mots-clés : convergence
@article{UMJ_2021_7_2_a4,
author = {Austine Efut Ofem and Unwana Effiong Udofia and Donatus Ikechi Igbokwe},
title = {A robust iterative approach for solving nonlinear {Volterra} delay integro-differential equations},
journal = {Ural mathematical journal},
pages = {59--85},
year = {2021},
volume = {7},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UMJ_2021_7_2_a4/}
}
TY - JOUR AU - Austine Efut Ofem AU - Unwana Effiong Udofia AU - Donatus Ikechi Igbokwe TI - A robust iterative approach for solving nonlinear Volterra delay integro-differential equations JO - Ural mathematical journal PY - 2021 SP - 59 EP - 85 VL - 7 IS - 2 UR - http://geodesic.mathdoc.fr/item/UMJ_2021_7_2_a4/ LA - en ID - UMJ_2021_7_2_a4 ER -
%0 Journal Article %A Austine Efut Ofem %A Unwana Effiong Udofia %A Donatus Ikechi Igbokwe %T A robust iterative approach for solving nonlinear Volterra delay integro-differential equations %J Ural mathematical journal %D 2021 %P 59-85 %V 7 %N 2 %U http://geodesic.mathdoc.fr/item/UMJ_2021_7_2_a4/ %G en %F UMJ_2021_7_2_a4
Austine Efut Ofem; Unwana Effiong Udofia; Donatus Ikechi Igbokwe. A robust iterative approach for solving nonlinear Volterra delay integro-differential equations. Ural mathematical journal, Tome 7 (2021) no. 2, pp. 59-85. http://geodesic.mathdoc.fr/item/UMJ_2021_7_2_a4/
[1] Abbas M., Nazir T., “A new faster iteration process applied to constrained minimization and feasibility problems”, Mat. Vesnik, 66:2 (2014), 223—234 http://hdl.handle.net/2263/43663 | MR | Zbl
[2] Abkar A., Eslamian M., “A fixed point theorem for generalized nonexpansive multivalued mappings”, Fixed Point Theory, 12:2 (2011), 241–246 | MR | Zbl
[3] Agarwal R.P., O'Regan D., Sahu D. R., “Iterative construction of fixed points of nearly asymptotically nonexpansive mappings”, J. Nonlinear Convex Anal., 8:1 (2007), 61–79 | MR | Zbl
[4] Ali F., Ali J, Nieto J. J., “Some observations on generalized non-expansive mappings with an application”, Comp. Appl. Math., 39 (2020), 74, 1–20 | DOI | MR
[5] Aoyama K., Kohsaka F., “Fixed point theorem for $\alpha$-nonexpansive mappings in Banach spaces”, Nonlinear Anal., 74:13 (2011), 4387–4391 | DOI | MR | Zbl
[6] Berinde V., Iterative Approximation of Fixed Points, Springer, Berlin, Heidelberg, 2007, 326 pp. | DOI | MR | Zbl
[7] Browder F. E., “Nonexpansive nonlinear operators in a Banach space”, Proc. Nat. Acad. Sci. USA., 54:4 (1965), 1041–1044 | DOI | MR | Zbl
[8] Cardinali T., Rubbioni P., “A generalization of the Caristi fixed point theorem in metric spaces”, Fixed Point Theory, 11:1 (2010), 3–10 | MR | Zbl
[9] Garodia C., Uddin I., “A new fixed point algorithm for finding the solution of a delay differential equation”, AIMS Mathematics, 5:4 (2020), 3182–3200 | DOI | MR
[10] Göhde D., “Zum Prinzip der kontraktiven Abbildung”, Math. Nachr., 30:3—4 (1965), 251–258 (in German) | DOI | MR | Zbl
[11] Gunduz B., Alagoz O., Akbulut S., “Convergence theorems of a faster iteration process including multivalued mappings with analytical and numerical examples”, Filomat, 32:16 (2018), 5665–5677 | DOI | MR
[12] Gürsoy F., Karakaya V., A Picard–S Hybrid Type Iteration Method for Solving a Differential Equation with Retarded Argument, 16 pp., arXiv: [math.FA] 1403.2546v2
[13] Harder A .M., Fixed Point Theory and Stability Results for Fixed Point Iteration Procedures, Ph.D. thesis., University of Missouri-Rolla, Missouri, 1987, 70 pp. | MR
[14] Harder A. M., Hicks T. L., “A stable iteration procedure for nonexpansive mappings”, Math. Japonica, 33:5 (1988), 687–692 | MR | Zbl
[15] Iqbal H., Abbas M., Husnine S. M., “Existence and approximation of fixed points of multivalued generalized $\alpha$-nonexpansive mappings in Banach spaces”, Numer. Algor., 85 (2020), 1029–1049 | DOI | MR | Zbl
[16] Ishikawa S., “Fixed points by a new iteration method”, Proc. Amer. Math. Soc., 44 (1994), 147–150 | DOI | MR
[17] Kirk W. A., “A fixed point theorem for mappings which do not increase distance”, Amer. Math. Monthly, 72:9 (1965), 1004–1006 | DOI | MR | Zbl
[18] Kucche K. D., Shikhare P. U., “Ulam Stabilities for nonlinear Volterra delay integro-differential equations”, J. Contemp. Math. Anal., 54:5 (2019), 276–287 | DOI | MR | Zbl
[19] Mann W. R., “Mean value methods in iteration”, Proc. Amer. Math. Soc., 4 (1953), 506–510 | DOI | MR | Zbl
[20] Markin J., “A fixed point theorem for set valued mappings”, Bull. Amer. Math. Soc., 74:1 (1968), 639–640 | DOI | MR | Zbl
[21] Nadler S. B., “Multi-valued contraction mappings”, Pacific J. Math., 30:2 (1969), 475–488 | DOI | MR | Zbl
[22] Noor M. A., “New approximation schemes for general variational inequalities”, J. Math. Anal. Appl., 251:1 (2000), 217–229 | DOI | MR | Zbl
[23] Ofem A. E., Igbokwe D. I., “An efficient iterative method and its applications to a nonlinear integral equation and a delay differential equation in Banach spaces”, Turkish J. Ineq., 4:2 (2020), 79–107 | MR
[24] Ofem A. E., Udofia U. E., Igbokwe D. I., “New iterative algorithm for solving constrained convex minimization problem and split feasibility problem”, Eur. J. Math. Anal., 1:2 (2021), 106–132 | DOI | MR
[25] Ofem A. E., Udofia U. E., “Iterative solutions for common fixed points of nonexpansive mappings and strongly pseudocontractive mappings with applications”, Canad. J. Appl. Math., 3:1 (2021), 18–36
[26] Okeke G. A., “Convergence analysis of the Picard–Ishikawa hybrid iterative process with applications”, Afr. Mat., 30:5–6 (2019), 817–835 | DOI | MR | Zbl
[27] Okeke G. A., Abbas M. A., “A solution of delay differential equations via Picard–Krasnoselskii hybrid iterative process”, Arab. J. Math., 6 (2017), 21–29 | DOI | MR | Zbl
[28] Okeke G. A., Abbas M. A., de la Sen M., “Approximation of the fixed point of multivalued quasi-nonexpansive mappings via a faster iterative Process with applications”, Discrete Dyn. Nat. Soc., 2020 (2020), 8634050, 1–11 | DOI | MR
[29] Pant D., Shukla R., “Approximating fixed points of generalized $\alpha$-nonexpansive mappings in Banach spaces”, Numer. Funct. Anal. Optim., 38:2 (2017), 248–266 | DOI | MR | Zbl
[30] Schu J., “Weak and strong convergence to fixed points of asymptotically nonexpansive mappings”, Bull. Aust. Math. Soc., 43:1 (1991), 153–159 | DOI | MR | Zbl
[31] Senter H. F., Dotson W. G., “Approximating fixed points of nonexpansive mappings”, Proc. Amer. Math. Soc., 44:2 (1974), 375–380 | DOI | MR | Zbl
[32] Song Y., Cho Y. J., “Some notes on Ishikawa iteration for multivalued mappings”, Bull. Korean Math. Soc., 48:3 (2011), 575–584 | DOI | MR | Zbl
[33] Suzuki T., “Fixed point theorems and convergence theorems for some generalized nonexpansive mappings”, J. Math. Anal. Appl., 340:2 (2008), 1088–1095 | DOI | MR | Zbl
[34] Thakur B. S., Thakur D., Postolache M., “A new iteration scheme for approximating fixed points of nonexpansive mappings”, Filomat, 30:10 (2016), 2711–2720 | DOI | MR | Zbl
[35] Timis I., “On the weak stability of Picard iteration for some contractive type mappings and coincidence theorems”, Int. J. Comput. Appl., 37:4 (2012), 9–13 | MR
[36] Ullah K., Arshad M., “Numerical reckoning fixed points for Suzuki's generalized nonexpansive mappings via new iteration process”, Filomat, 32 (2018), 187–196 | DOI | MR | Zbl
[37] Weng X., “Fixed point iteration for local strictly pseudo-contractive mapping”, Proc. Amer. Math. Soc., 113 (1991), 727–731 | DOI | MR | Zbl