Shilla graphs with $b = 5$ and $b = 6$
Ural mathematical journal, Tome 7 (2021) no. 2, pp. 51-58 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A $Q$-polynomial Shilla graph with ${b = 5}$ has intersection arrays ${\{105t,4(21t+1),16(t+1);}$ ${1,4 (t+1),84t\}}$, $t\in\{3,4,19\}$. The paper proves that distance-regular graphs with these intersection arrays do not exist. Moreover, feasible intersection arrays of $Q$-polynomial Shilla graphs with $b = 6$ are found.
Keywords: Shilla graph, distance-regular graph
Mots-clés : $Q$-polynomial graph.
@article{UMJ_2021_7_2_a3,
     author = {Alexander A. Makhnev and Ivan N. Belousov},
     title = {Shilla graphs with $b = 5$ and $b = 6$},
     journal = {Ural mathematical journal},
     pages = {51--58},
     year = {2021},
     volume = {7},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2021_7_2_a3/}
}
TY  - JOUR
AU  - Alexander A. Makhnev
AU  - Ivan N. Belousov
TI  - Shilla graphs with $b = 5$ and $b = 6$
JO  - Ural mathematical journal
PY  - 2021
SP  - 51
EP  - 58
VL  - 7
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UMJ_2021_7_2_a3/
LA  - en
ID  - UMJ_2021_7_2_a3
ER  - 
%0 Journal Article
%A Alexander A. Makhnev
%A Ivan N. Belousov
%T Shilla graphs with $b = 5$ and $b = 6$
%J Ural mathematical journal
%D 2021
%P 51-58
%V 7
%N 2
%U http://geodesic.mathdoc.fr/item/UMJ_2021_7_2_a3/
%G en
%F UMJ_2021_7_2_a3
Alexander A. Makhnev; Ivan N. Belousov. Shilla graphs with $b = 5$ and $b = 6$. Ural mathematical journal, Tome 7 (2021) no. 2, pp. 51-58. http://geodesic.mathdoc.fr/item/UMJ_2021_7_2_a3/

[1] Belousov I. N., “Shilla distance-regular graphs with $b_2 = sc_2$”, Trudy Inst. Mat. i Mekh. UrO RAN, 24:3 (2018), 16—26 (in Russian) | DOI | MR

[2] Brouwer A. E., Cohen A. M., Neumaier A., Distance-Regular Graphs, Springer-Verlag, Berlin, Heidelberg, 1989, 495 pp. | DOI | MR | Zbl

[3] Coolsaet K., Jurišić A., “Using equality in the Krein conditions to prove nonexistence of certain distance-regular graphs”, J. Combin. Theory Ser. A, 115:6 (2008), 1086–1095 | DOI | MR | Zbl

[4] Gavrilyuk A. L., Koolen J. H., “A characterization of the graphs of bilinear $d\times d$-forms over $\mathbb{F}_2$”, Combinatorica, 39:2 (2019), 289–321 | DOI | MR | Zbl

[5] Jurišić A., Vidali J., “Extremal 1-codes in distance-regular graphs of diameter 3”, Des. Codes Cryptogr., 65:1 (2012), 29–47 | DOI | MR | Zbl

[6] Koolen J. H., Park J., “Shilla distance-regular graphs”, European J. Combin., 31:8 (2010), 2064–2073 | DOI | MR | Zbl

[7] Makhnev A. A., Belousov I. N., “To the theory of Shilla graphs with $b_2=c_2$”, Sib. Electr. Math. Reports, 14 (2017), 1135–1146 (in Russian) | DOI | MR | Zbl