Mots-clés : $Q$-polynomial graph.
@article{UMJ_2021_7_2_a3,
author = {Alexander A. Makhnev and Ivan N. Belousov},
title = {Shilla graphs with $b = 5$ and $b = 6$},
journal = {Ural mathematical journal},
pages = {51--58},
year = {2021},
volume = {7},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UMJ_2021_7_2_a3/}
}
Alexander A. Makhnev; Ivan N. Belousov. Shilla graphs with $b = 5$ and $b = 6$. Ural mathematical journal, Tome 7 (2021) no. 2, pp. 51-58. http://geodesic.mathdoc.fr/item/UMJ_2021_7_2_a3/
[1] Belousov I. N., “Shilla distance-regular graphs with $b_2 = sc_2$”, Trudy Inst. Mat. i Mekh. UrO RAN, 24:3 (2018), 16—26 (in Russian) | DOI | MR
[2] Brouwer A. E., Cohen A. M., Neumaier A., Distance-Regular Graphs, Springer-Verlag, Berlin, Heidelberg, 1989, 495 pp. | DOI | MR | Zbl
[3] Coolsaet K., Jurišić A., “Using equality in the Krein conditions to prove nonexistence of certain distance-regular graphs”, J. Combin. Theory Ser. A, 115:6 (2008), 1086–1095 | DOI | MR | Zbl
[4] Gavrilyuk A. L., Koolen J. H., “A characterization of the graphs of bilinear $d\times d$-forms over $\mathbb{F}_2$”, Combinatorica, 39:2 (2019), 289–321 | DOI | MR | Zbl
[5] Jurišić A., Vidali J., “Extremal 1-codes in distance-regular graphs of diameter 3”, Des. Codes Cryptogr., 65:1 (2012), 29–47 | DOI | MR | Zbl
[6] Koolen J. H., Park J., “Shilla distance-regular graphs”, European J. Combin., 31:8 (2010), 2064–2073 | DOI | MR | Zbl
[7] Makhnev A. A., Belousov I. N., “To the theory of Shilla graphs with $b_2=c_2$”, Sib. Electr. Math. Reports, 14 (2017), 1135–1146 (in Russian) | DOI | MR | Zbl