Unit and unitary Cayley graphs for the ring of Eisenstein integers modulo $n$
Ural mathematical journal, Tome 7 (2021) no. 2, pp. 43-50

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $ {E}_{n} $ be the ring of Eisenstein integers modulo $n$. We denote by $G({E}_{n})$ and $G_{{E}_{n}}$, the unit graph and the unitary Cayley graph of $ {E}_{n} $, respectively. In this paper, we obtain the value of the diameter, the girth, the clique number and the chromatic number of these graphs. We also prove that for each $n>1$, the graphs $G(E_{n})$ and $G_{E_{n}}$ are Hamiltonian.
Keywords: unit graph, unitary Cayley graph, Eisenstein integers, Hamiltonian graph.
@article{UMJ_2021_7_2_a2,
     author = {Reza Jahani-Nezhad and Ali Bahrami},
     title = {Unit and unitary {Cayley} graphs for the ring of {Eisenstein} integers modulo $n$},
     journal = {Ural mathematical journal},
     pages = {43--50},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2021_7_2_a2/}
}
TY  - JOUR
AU  - Reza Jahani-Nezhad
AU  - Ali Bahrami
TI  - Unit and unitary Cayley graphs for the ring of Eisenstein integers modulo $n$
JO  - Ural mathematical journal
PY  - 2021
SP  - 43
EP  - 50
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UMJ_2021_7_2_a2/
LA  - en
ID  - UMJ_2021_7_2_a2
ER  - 
%0 Journal Article
%A Reza Jahani-Nezhad
%A Ali Bahrami
%T Unit and unitary Cayley graphs for the ring of Eisenstein integers modulo $n$
%J Ural mathematical journal
%D 2021
%P 43-50
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UMJ_2021_7_2_a2/
%G en
%F UMJ_2021_7_2_a2
Reza Jahani-Nezhad; Ali Bahrami. Unit and unitary Cayley graphs for the ring of Eisenstein integers modulo $n$. Ural mathematical journal, Tome 7 (2021) no. 2, pp. 43-50. http://geodesic.mathdoc.fr/item/UMJ_2021_7_2_a2/