Unit and unitary Cayley graphs for the ring of Eisenstein integers modulo $n$
Ural mathematical journal, Tome 7 (2021) no. 2, pp. 43-50 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $ {E}_{n} $ be the ring of Eisenstein integers modulo $n$. We denote by $G({E}_{n})$ and $G_{{E}_{n}}$, the unit graph and the unitary Cayley graph of $ {E}_{n} $, respectively. In this paper, we obtain the value of the diameter, the girth, the clique number and the chromatic number of these graphs. We also prove that for each $n>1$, the graphs $G(E_{n})$ and $G_{E_{n}}$ are Hamiltonian.
Keywords: unit graph, unitary Cayley graph, Eisenstein integers, Hamiltonian graph.
@article{UMJ_2021_7_2_a2,
     author = {Reza Jahani-Nezhad and Ali Bahrami},
     title = {Unit and unitary {Cayley} graphs for the ring of {Eisenstein} integers modulo $n$},
     journal = {Ural mathematical journal},
     pages = {43--50},
     year = {2021},
     volume = {7},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2021_7_2_a2/}
}
TY  - JOUR
AU  - Reza Jahani-Nezhad
AU  - Ali Bahrami
TI  - Unit and unitary Cayley graphs for the ring of Eisenstein integers modulo $n$
JO  - Ural mathematical journal
PY  - 2021
SP  - 43
EP  - 50
VL  - 7
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UMJ_2021_7_2_a2/
LA  - en
ID  - UMJ_2021_7_2_a2
ER  - 
%0 Journal Article
%A Reza Jahani-Nezhad
%A Ali Bahrami
%T Unit and unitary Cayley graphs for the ring of Eisenstein integers modulo $n$
%J Ural mathematical journal
%D 2021
%P 43-50
%V 7
%N 2
%U http://geodesic.mathdoc.fr/item/UMJ_2021_7_2_a2/
%G en
%F UMJ_2021_7_2_a2
Reza Jahani-Nezhad; Ali Bahrami. Unit and unitary Cayley graphs for the ring of Eisenstein integers modulo $n$. Ural mathematical journal, Tome 7 (2021) no. 2, pp. 43-50. http://geodesic.mathdoc.fr/item/UMJ_2021_7_2_a2/

[1] Aalipour G., Akbari S., “On the Cayley graph of a commutative ring with respect to its zero-divisors”, Comm. Algebra, 44:4 (2016), 1443–1459 | DOI | MR | Zbl

[2] Akbari S., Estaji E., Khorsandi M. R., “On the unit graph of a non-commutative ring”, Algebra Colloq., 22, 817–822 | DOI | MR | Zbl

[3] Akhtar R., Jackson-Henderson T., Karpman R., Boggess M., Jiménez I., Kinzel A., Pritikin D., “On the unitary Cayley graph of a finite ring”, Electron. J. Combin., 16:1 (2009), R117 | DOI | MR | Zbl

[4] Alkam O., Abu Osba E., “On Eisenstein integers modulo $n$”, Int. Math. Forum., 5:22 (2010), 1075–1082 | MR | Zbl

[5] Anderson D. F., Badawi A., “The total graph of a commutative ring”, J. Algebra, 320:7 (2008), 2706–2719 | DOI | MR | Zbl

[6] Anderson D. F., Livingston P. S., “The zero-divisor graph of a commutative ring”, J. Algebra, 217:2 (1999), 434–447 | DOI | MR | Zbl

[7] Ashrafi N., Maimani H. R., Pournaki M. R., Yassemi S., “Unit graphs associated with rings.”, Comm. Algebra, 38 (2010), 2851–2871 | DOI | MR | Zbl

[8] Atiyah M. F., MacDonald I. G., Introduction to Commutative Algebra, Addison-Wesley Publishing Co., Menlo Park, California, London, Don Mills, Ontario, 1969, 128 pp. | MR | Zbl

[9] Bahrami A., Jahani-Nezhad R., “Unit and unitary Cayley graphs for the ring of Gaussian integers modulo $n$”, Quasigroups Related Systems, 25:2 (2017), 189–200 | MR | Zbl

[10] Beck I., “Coloring of commutative rings”, J. Algebra, 116:1 (1988), 208–226 | DOI | MR | Zbl

[11] Bondy J. A., Murty U. S. R., Graph Theory with Applications, North-Holland, New York, Amsterdam, Oxford, 1976, 264 pp. | MR

[12] Cayley A., “Desiderata and Suggestions: No. 2. The Theory of Groups: Graphical Representation”, Amer. J. Math., 1:2 (1878), 174–176 | DOI | MR | Zbl

[13] Chung F. R. K., “Diameters and eigenvalues”, J. Amer. Math. Soc., 2:2 (1989), 187–196 | DOI | MR

[14] Dejter I. J., Giudici R. E, “On unitary Cayley graphs”, J. Combin. Math. Comput., 18 (1995), 121–124 | MR | Zbl

[15] Diestel R., Graph Theory, Springer-Verlag, Berlin, Heidelberg, 2001, 428 pp. | DOI

[16] Grimaldi R. P., “Graphs from rings”, Congr. Numer., 17 (1990), 95–103 | MR

[17] Ireland K., Rosen M., A Classical Introduction to Modern Number Theory, Springer-Verlag, NY, 1990, 394 pp. | DOI | MR | Zbl

[18] Khashyarmanesh K., Khorsandi M. R., “A generalization of the unit and unitary Cayley graphs of a commutative ring”, Acta Math. Hungar., 137 (2012), 242–253 | DOI | MR | Zbl

[19] Kiani D., Aghaei M. M. H., “On the unitary Cayley graph of a ring”, Electron. J. Combin., 19:2 (2012), P10 | DOI | MR | Zbl

[20] Lanski C., Maróti A., “Ring elements as sums of units”, Cent. Eur. J. Math., 7 (2009), 395–399 | DOI | MR | Zbl

[21] Maimani H. R., Pournaki M. R., Yassemi S., “Weakly perfect graphs arising from rings”, Glasg. Math. J., 52:3 (2010), 417–425 | DOI | MR | Zbl

[22] Maimani H. R., Pournaki M. R., Yassemi S., “Necessary and sufficient conditions for unit graphs to be Hamiltonian”, Pacific J. Math., 249:2 (2011), 419–429 | DOI | MR | Zbl