Unit and unitary Cayley graphs for the ring of Eisenstein integers modulo $n$
Ural mathematical journal, Tome 7 (2021) no. 2, pp. 43-50
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $ {E}_{n} $ be the ring of Eisenstein integers modulo $n$. We denote by $G({E}_{n})$ and $G_{{E}_{n}}$, the unit graph and the unitary Cayley graph of $ {E}_{n} $, respectively. In this paper, we obtain the value of the diameter, the girth, the clique number and the chromatic number of these graphs. We also prove that for each $n>1$, the graphs $G(E_{n})$ and $G_{E_{n}}$
are Hamiltonian.
Keywords:
unit graph, unitary Cayley graph, Eisenstein integers, Hamiltonian graph.
@article{UMJ_2021_7_2_a2,
author = {Reza Jahani-Nezhad and Ali Bahrami},
title = {Unit and unitary {Cayley} graphs for the ring of {Eisenstein} integers modulo $n$},
journal = {Ural mathematical journal},
pages = {43--50},
publisher = {mathdoc},
volume = {7},
number = {2},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UMJ_2021_7_2_a2/}
}
TY - JOUR AU - Reza Jahani-Nezhad AU - Ali Bahrami TI - Unit and unitary Cayley graphs for the ring of Eisenstein integers modulo $n$ JO - Ural mathematical journal PY - 2021 SP - 43 EP - 50 VL - 7 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UMJ_2021_7_2_a2/ LA - en ID - UMJ_2021_7_2_a2 ER -
Reza Jahani-Nezhad; Ali Bahrami. Unit and unitary Cayley graphs for the ring of Eisenstein integers modulo $n$. Ural mathematical journal, Tome 7 (2021) no. 2, pp. 43-50. http://geodesic.mathdoc.fr/item/UMJ_2021_7_2_a2/