Linearization of Poisson–Lie structures on the $2D$ Euclidean and $(1+1)$ Poincaré groups
Ural mathematical journal, Tome 7 (2021) no. 2, pp. 33-42 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper deals with linearization problem of Poisson-Lie structures on the $(1+1)$ Poincaré and $2D$ Euclidean groups. We construct the explicit form of linearizing coordinates of all these Poisson-Lie structures. For this, we calculate all Poisson-Lie structures on these two groups mentioned above, through the correspondence with Lie Bialgebra structures on their Lie algebras which we first determine.
Keywords: linearization.
Mots-clés : Poisson-Lie groups, Lie bialgebras
@article{UMJ_2021_7_2_a1,
     author = {Bousselham Ganbouri and Mohamed Wadia Mansouri},
     title = {Linearization of {Poisson{\textendash}Lie} structures on the $2D$ {Euclidean} and $(1+1)$ {Poincar\'e} groups},
     journal = {Ural mathematical journal},
     pages = {33--42},
     year = {2021},
     volume = {7},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2021_7_2_a1/}
}
TY  - JOUR
AU  - Bousselham Ganbouri
AU  - Mohamed Wadia Mansouri
TI  - Linearization of Poisson–Lie structures on the $2D$ Euclidean and $(1+1)$ Poincaré groups
JO  - Ural mathematical journal
PY  - 2021
SP  - 33
EP  - 42
VL  - 7
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UMJ_2021_7_2_a1/
LA  - en
ID  - UMJ_2021_7_2_a1
ER  - 
%0 Journal Article
%A Bousselham Ganbouri
%A Mohamed Wadia Mansouri
%T Linearization of Poisson–Lie structures on the $2D$ Euclidean and $(1+1)$ Poincaré groups
%J Ural mathematical journal
%D 2021
%P 33-42
%V 7
%N 2
%U http://geodesic.mathdoc.fr/item/UMJ_2021_7_2_a1/
%G en
%F UMJ_2021_7_2_a1
Bousselham Ganbouri; Mohamed Wadia Mansouri. Linearization of Poisson–Lie structures on the $2D$ Euclidean and $(1+1)$ Poincaré groups. Ural mathematical journal, Tome 7 (2021) no. 2, pp. 33-42. http://geodesic.mathdoc.fr/item/UMJ_2021_7_2_a1/

[1] Alekseev A., Meinrenken E., “Linearization of Poisson Lie group Structures”, J. Symplectic Geom., 14:1 (2016.), 227–267 | DOI

[2] Chloup-Arnould V., “Linearization of some Poisson–Lie tensor”, J. Geom. Phys., 24:1 (1997), 46–52 | DOI | MR | Zbl

[3] Conn J. F., “Normal forms for analytic Poisson structures”, Ann. of Math. (2), 119:3 (1984), 577–601 | DOI | MR | Zbl

[4] Conn J. F., “Normal forms for smooth Poisson structures”, Ann. of Math. (2), 121:3 (1985), 565–593 | DOI | MR | Zbl

[5] Drinfel'd V. G., “Quantum groups”, J. Math. Sci., 41 (1988), 898–915 | DOI | MR | Zbl

[6] Drinfel'd V. G., “Hamiltonian structures on Lie groups, Lie bialgebras and the geometric meaning of the classical Yang–Baxter equations”, Dokl. Akad. Nauk SSSR, 268:2 (1983), 285–287 (in Russian) | MR | Zbl

[7] Dufour J.-P., “Linéarisation de certaines structures de Poisson”, J. Differential Geom., 32:2, 415–428 (in French) | DOI | MR | Zbl

[8] Enriquez B., Etingof P., Marshall I., “Comparison of Poisson structures and Poisson–Lie dynamical $r$-matrices”, Int. Math. Res. Not., 2005, no. 36, 2183–2198 | DOI | MR | Zbl

[9] Gomez X., “Classification of three-dimensional Lie bialgebras”, J. Math. Phys., 41 (2000), 4939 | DOI | MR | Zbl

[10] Lu J.-H., Weinstein A., “Poisson Lie group, dressing transformations, and Bruhat decomposition”, J. Differential Geom., 31:2 (1990), 501–526 | DOI | MR | Zbl

[11] Weinstein A., “The local structure of Poisson manifolds”, J. Differential Geom., 18:3 (1983), 523–557 | DOI | MR | Zbl