Products of ultrafilters and maximal linked systems on widely understood measurable spaces
Ural mathematical journal, Tome 7 (2021) no. 2, pp. 3-32 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Constructions related to products of maximal linked systems (MLSs) and MLSs on the product of widely understood measurable spaces are considered (these measurable spaces are defined as sets equipped with $\pi$-systems of their subsets; a $\pi$-system is a family closed with respect to finite intersections). We compare families of MLSs on initial spaces and MLSs on the product. Separately, we consider the case of ultrafilters. Equipping set-products with topologies, we use the box-topology and the Tychonoff product of Stone-type topologies. The properties of compaction and homeomorphism hold, respectively.
Keywords: maximal linked system, topology, ultrafilter.
@article{UMJ_2021_7_2_a0,
     author = {Alexander G. Chentsov},
     title = {Products of ultrafilters and maximal linked systems on widely understood measurable spaces},
     journal = {Ural mathematical journal},
     pages = {3--32},
     year = {2021},
     volume = {7},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2021_7_2_a0/}
}
TY  - JOUR
AU  - Alexander G. Chentsov
TI  - Products of ultrafilters and maximal linked systems on widely understood measurable spaces
JO  - Ural mathematical journal
PY  - 2021
SP  - 3
EP  - 32
VL  - 7
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UMJ_2021_7_2_a0/
LA  - en
ID  - UMJ_2021_7_2_a0
ER  - 
%0 Journal Article
%A Alexander G. Chentsov
%T Products of ultrafilters and maximal linked systems on widely understood measurable spaces
%J Ural mathematical journal
%D 2021
%P 3-32
%V 7
%N 2
%U http://geodesic.mathdoc.fr/item/UMJ_2021_7_2_a0/
%G en
%F UMJ_2021_7_2_a0
Alexander G. Chentsov. Products of ultrafilters and maximal linked systems on widely understood measurable spaces. Ural mathematical journal, Tome 7 (2021) no. 2, pp. 3-32. http://geodesic.mathdoc.fr/item/UMJ_2021_7_2_a0/

[1] Aleksandrov P. S., Vvedenie v teoriyu mnozhestv i obshchuyu topologiyu [Introduction to Set Theory and General Topology], Nauka, M., 1977, 368 pp. (in Russian) | MR

[2] Arkhangel'skii A. V., “Compactness”, Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr., 50 (1989), 5–128 (in Russian)

[3] Chentsov A. G., “Filters and ultrafilters in the constructions of attraction sets”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2011, no. 1, 113–142 (in Russian) | DOI | MR | Zbl

[4] Chentsov A. G., “On the question of representation of ultrafilters and their application in extension constructions”, Proc. Steklov Inst. Math., 287: Suppl. 1 (2014), 29–48 | DOI | MR

[5] Chentsov A. G., “Some representations connected with ultrafilters and maximal linked systems”, Ural Math. J., 3:2 (2017), 100–121 | DOI | MR | Zbl

[6] Chentsov A. G., “Ultrafilters and maximal linked systems of sets”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 27:3 (2017), 365–388 (in Russian) | DOI | MR | Zbl

[7] Chentsov A. G., “Bitopological spaces of ultrafilters and maximal linked systems”, Proc. Steklov Inst. Math., 305:Suppl. 1 (2019), S24–S39 | DOI | MR | Zbl

[8] Chentsov A. G., “On the supercompactness of ultrafilter space with the topology of Wallman type”, Izv. Inst. Mat. Inform., 54 (2019), 74–101 | DOI | MR | Zbl

[9] Chentsov A. G., “Supercompact spaces of ultrafilters and maximal linked systems”, Trudy Inst. Mat. i Mekh. UrO RAN, 25:2 (2019), 240–257 (in Russian) | DOI | MR

[10] Chentsov A. G., “To a question on the supercompactness of ultrafilter spaces”, Ural Math. J., 5:1 (2019), 31–47 | DOI | MR | Zbl

[11] Chentsov A. G., “Filters and linked families of sets”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 30:3 (2020), 444–467 | DOI | MR

[12] Chentsov A. G., “Some topological properties of the space of maximal linked systems with topology of Wallman type”, Izv. Inst. Mat. Inform., 56 (2020), 122–137 (in Russian) | DOI | MR | Zbl

[13] Chentsov A. G., “Maximal linked systems on families of measurable rectangles”, Russian Universities Reports. Mathematics, 26:133 (2021), 77–104 (in Russian) | DOI | MR | Zbl

[14] Chentsov A. G., “Maximal linked systems on products of widely understood measurable spaces”, Russian Universities Reports. Mathematics, 26:134 (2021), 35–69 (in Russian) | DOI | MR

[15] Engelking R., General Topology, PWN, Warsaw, 1977, 751 pp. | MR | Zbl

[16] Fedorchuk V. V., Filippov V. V., Obshchaya topologiya. Osnovnye konstrukcii [General Topology. Basic Foundations], Fizmatlit, Moscow, 2006, 332 pp. (in Russian)

[17] De Groot J., “Superextensions and supercompactness”, I. Intern. Symp. on Extension Theory of Topological Structures and its Applications, VEB Deutscher Verlag Wis., Berlin, 1969, 89–90 | MR

[18] Kelley J. L., General Topology, D. Van Nostrand Company, Inc., Toronto, London, New York, Princeton, New Jersey, 1957, 298 pp. | MR

[19] Kuratowski K., Mostowski A., Set Theory, North Holland Publishing Company, Amsterdam etc., 1968, 416 pp. | MR | Zbl

[20] Van Mill J., Supercompactness and Wallman Spaces, Math. Center Tract, Amsterdam, 1977, 244 pp. | MR | Zbl

[21] Strok M., Szymański A., “Compact metric spaces have binary bases”, Fund. Math., 89:1 (1975), 81–91 | DOI | MR | Zbl

[22] Warga J., Optimal Control of Differential and Functional Equations, Academic Press, NY, London, 1972, 531 pp. | DOI | MR | Zbl