Modified proximal point algorithm for minimization and fixed point problem in CAT(0) spaces
Ural mathematical journal, Tome 7 (2021) no. 1, pp. 109-119 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we study modified-type proximal point algorithm for approximating a common solution of a lower semi-continuous mapping and fixed point of total asymptotically nonexpansive mapping in complete CAT(0) spaces. Under suitable conditions, some strong convergence theorems of the proposed algorithms to such a common solution are proved.
Keywords: total asymptotically nonexpansive mapping, fixed point, strong convergence, CAT(0) space.
Mots-clés : proximal point algorithm, $\triangle$ convergence
@article{UMJ_2021_7_1_a9,
     author = {Godwin Chidi Ugwunnadi},
     title = {Modified proximal point algorithm for minimization and fixed point problem in {CAT(0)} spaces},
     journal = {Ural mathematical journal},
     pages = {109--119},
     year = {2021},
     volume = {7},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2021_7_1_a9/}
}
TY  - JOUR
AU  - Godwin Chidi Ugwunnadi
TI  - Modified proximal point algorithm for minimization and fixed point problem in CAT(0) spaces
JO  - Ural mathematical journal
PY  - 2021
SP  - 109
EP  - 119
VL  - 7
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UMJ_2021_7_1_a9/
LA  - en
ID  - UMJ_2021_7_1_a9
ER  - 
%0 Journal Article
%A Godwin Chidi Ugwunnadi
%T Modified proximal point algorithm for minimization and fixed point problem in CAT(0) spaces
%J Ural mathematical journal
%D 2021
%P 109-119
%V 7
%N 1
%U http://geodesic.mathdoc.fr/item/UMJ_2021_7_1_a9/
%G en
%F UMJ_2021_7_1_a9
Godwin Chidi Ugwunnadi. Modified proximal point algorithm for minimization and fixed point problem in CAT(0) spaces. Ural mathematical journal, Tome 7 (2021) no. 1, pp. 109-119. http://geodesic.mathdoc.fr/item/UMJ_2021_7_1_a9/

[1] Alber Ya. I., Chidume C. E., Zegeye H., “Approximating fixed points of total asymptotically nonexpansive mappings”, Fixed Point Theory Appl., 2006, 10673, 1–20 | DOI | MR

[2] Ahmad I., Ahmad M., “An implicit viscosity technique of nonexpansive mapping in CAT(0) spaces”, Open J. Math. Anal., 1 (2017), 1–12 | DOI

[3] Agarwal R. P., O'Regan D., Sahu D. R., “Iterative construction of fixed points of nearly asymptotically nonexpansive mappings”, J. Nonlinear Convex Anal., 8:1 (2007), 61–79 | MR | Zbl

[4] Ambrosio L., Gigli N., Savare G., Gradient Flows in Metric Spaces and in the Space of Probability Measures, Lectures in Mathematics ETH, 2nd ed., Birkhäuser, Zürich, Basel, 2008, 334 pp. | DOI | MR | Zbl

[5] Ariza-Ruiz D., Leuştean L., López-Acedo G., “Firmly nonexpansive mappings in classes of geodesic spaces”, Trans. Amer. Math. Soc., 366:8 (2014), 4299–4322 | DOI | MR | Zbl

[6] Bačák M., “The proximal point algorithm in metric spaces”, Israel J. Math., 194 (2013), 689–701 | DOI | MR | Zbl

[7] Berg I. D., Nikolaev I. G., “Quasilinearization and curvature of Aleksandrov spaces”, Geom. Dedicata, 133 (2008), 195–218 | DOI | MR | Zbl

[8] Bonyah E., Ahmad M., Ahmad I., “On the viscosity rule for common fixed points of two nonexpansive mappings in CAT(0) spaces”, Open J. Math. Sci., 2:1 (2018), 39–55 | DOI

[9] Bridson M. R., Häfliger A., Metric Spaces of Nonpositive Curvature, v. 319, Grundlehren Math. Wiss., Springer-Verlag, Berlin, Heidelberg, 1999, 643 pp. | DOI | MR

[10] Burago D., Burago Yu., Ivanov S., A Course in Metric Geometry, v. 33, Grad. Stud. Math., A.M.S., Providence, RI, 2001, 415 pp. | DOI | MR | Zbl

[11] Chang S.-S., Wang L., Joseph Lee H. W., Chan C. K., Yang L., “Demiclosed principle and $\triangle$-convergence theorems for total asymptotically nonexpansive mappings in CAT(0) spaces”, Appl. Math. Comput., 219:5 (2012), 2611–2617 | DOI | MR | Zbl

[12] Chang S.-S., Yao J.-C., Wang L., Qin L. J., “Some convergence theorems involving proximal point and common fixed points for asymptotically nonexpansive mappings in CAT(0) spaces”, Fixed Point Theory Appl., 2016, 68, 1–11 | DOI | MR

[13] Cholamjiak P., Abdou A. A., Cho Y. J., “Proximal point algorithms involving fixed points of nonexpansive mappings in CAT(0) spaces”, Fixed Point Theory Appl., 2015, 227, 1–13 | DOI | MR

[14] Dehghan H., Rooin J., A Characterization of Metric Projection in CAT(0) Spaces, 2012, 3 pp., arXiv: [math.FA] 1311.4174

[15] Dhompongsa S., Kirk W. A., Sims B., “Fixed points of uniformly lipschitzian mappings”, Nonlinear Anal., 65:4 (2006), 762–772 | DOI | MR | Zbl

[16] Dhompongsa S., Panyanak B., “On $\triangle$-convergence theorems in CAT(0) spaces”, Comput. Math. Appl., 56:10 (2008), 2572–2579 | DOI | MR | Zbl

[17] Jost J., “Convex functionals and generalized harmonic maps into spaces of non positive curvature”, Comment. Math. Helv., 70 (1995), 659–673 | DOI | MR | Zbl

[18] Güler O., “On the convergence of the proximal point algorithm for convex minimization”, SIAM J. Control Optim., 29:2 (1991), 403–419 | DOI | MR | Zbl

[19] Kakavandi B. A., “Weak topologies in complete CAT(0) metric spaces”, Proc. Amer. Math. Soc., 141:3 (2012), 1029–1039 https://www.jstor.org/stable/23558440 | DOI

[20] Kamimura S., Takahashi W., “Approximating solutions of maximal monotone operators in Hilbert spaces”, J. Approx. Theory, 106:2 (2000), 226–240 | DOI | MR | Zbl

[21] Kang S. M., Haq A. U., Nazeer W., Ahmad I., Ahmad M., “Explicit viscosity rule of nonexpansive mappings in CAT(0) spaces”, J. Comput. Anal. Appl., 27:6 (2019), 1034–1043

[22] Kirk W. A., “Geodesic geometry and fixed point theory”, Seminar of MathematicalAnalysis, Malaga/Seville, v. 64, eds. Álvares D.G., Acelo G.L., Caro R.V., 2002/2003, 195–225 | MR

[23] Kirk W. A., “Geodesic geometry and fixed point theory, II”, Int. Conf. on Fixed Point Theory and Applications (Yokohama Publ., Yokohama, Japan), 2004, 113–142 | MR | Zbl

[24] Kirk W. A., Panyanak B., “A concept of convergence in geodesic spaces”, Nonlinear Anal., 68:12 (2008), 3689–3696 | DOI | MR | Zbl

[25] Maingé P. E., “Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization”, Set-Valued Anal., 16:7–8 (2008.), 899–912 | DOI | MR | Zbl

[26] Martinet B., “Régularisation d'inéquations variationnelles par approximations successives”, Rev. Fr. Inform. Rech. Opér., 4:R3 (1970), 154—158 (in France) | MR | Zbl

[27] Mayer U. F., “Gradient flows on nonpositively curved metric spaces and harmonic maps”, Commun. Anal. Geom., 6:2 (1998), 199–253 | DOI | MR | Zbl

[28] Rockafellar R. T., “Monotone operators and the proximal point algorithm”, SIAM J. Control Optim., 14:5 (1976), 877–898 | DOI | MR | Zbl

[29] Suparatulatorn R., Cholamjiak P., Suantai S., “On solving the minimization problem and the fixed-point problem for nonexpansive mappings in CAT(0) spaces”, Optim. Methods Softw., 32:1 (2017), 182–192 | DOI | MR | Zbl

[30] Xu H. K., “Iterative algorithms for nonlinear operators”, J. Lond. Math. Soc. (2), 66:1 (2002), 240–256 | DOI | MR | Zbl