The vertex distance complement spectrum of subdivision vertex join and subdivision edge join of two regular graphs
Ural mathematical journal, Tome 7 (2021) no. 1, pp. 102-108 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The vertex distance complement (VDC) matrix $C$, of a connected graph $G$ with vertex set consisting of $n$ vertices, is a real symmetric matrix $[c_{ij}]$ that takes the value $n - d_{ij}$ where $d_{ij}$ is the distance between the vertices $v_i$ and $v_j$ of $G$ for $i \neq j$ and 0 otherwise. The vertex distance complement spectrum of the subdivision vertex join, $G_1 \dot{\bigvee} G_2$ and the subdivision edge join $G_1 \underline{\bigvee} G_2$ of regular graphs $G_1$ and $G_2$ in terms of the adjacency spectrum are determined in this paper.
Keywords: vertex distance complement spectrum, subdivision vertex join, subdivision edge join.
Mots-clés : distance matrix
@article{UMJ_2021_7_1_a8,
     author = {Ann Susa Thomas and Sunny Joseph Kalayathankal and Joseph Varghese Kureethara},
     title = {The vertex distance complement spectrum of subdivision vertex join and subdivision edge join of two regular graphs},
     journal = {Ural mathematical journal},
     pages = {102--108},
     year = {2021},
     volume = {7},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2021_7_1_a8/}
}
TY  - JOUR
AU  - Ann Susa Thomas
AU  - Sunny Joseph Kalayathankal
AU  - Joseph Varghese Kureethara
TI  - The vertex distance complement spectrum of subdivision vertex join and subdivision edge join of two regular graphs
JO  - Ural mathematical journal
PY  - 2021
SP  - 102
EP  - 108
VL  - 7
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UMJ_2021_7_1_a8/
LA  - en
ID  - UMJ_2021_7_1_a8
ER  - 
%0 Journal Article
%A Ann Susa Thomas
%A Sunny Joseph Kalayathankal
%A Joseph Varghese Kureethara
%T The vertex distance complement spectrum of subdivision vertex join and subdivision edge join of two regular graphs
%J Ural mathematical journal
%D 2021
%P 102-108
%V 7
%N 1
%U http://geodesic.mathdoc.fr/item/UMJ_2021_7_1_a8/
%G en
%F UMJ_2021_7_1_a8
Ann Susa Thomas; Sunny Joseph Kalayathankal; Joseph Varghese Kureethara. The vertex distance complement spectrum of subdivision vertex join and subdivision edge join of two regular graphs. Ural mathematical journal, Tome 7 (2021) no. 1, pp. 102-108. http://geodesic.mathdoc.fr/item/UMJ_2021_7_1_a8/

[1] Brouwer A. E., Haemers W. H., Spectra of Graphs, Springer, New York, 2011, 250 pp. | DOI | MR

[2] Collatz L. V., Sinogowitz U., “Spektren endlicher grafen”, Abh. Math. Semin. Univ. Hambg., 21:1 (1957), 63–77 (in German) | DOI | MR | Zbl

[3] Cvetković D. M., Doob M., Sachs H., Spectra of Graphs — Theory and Application, Academic Press, New York, 1980, 368 pp. | MR

[4] Indulal G. Spectrum of two new joins of graphs and infinite families of integral graphs, Kragujevac J. Math., 36:1 (2012), 133–139 | MR | Zbl

[5] Indulal G., Gutman I., Vijayakumar A., “On distance energy of graphs”, MATCH Commun. Math. Comput. Chem., 60:2 (2008), 461–472 | MR | Zbl

[6] Indulal G., Scaria D. C., Liu X., “The distance spectrum of the subdivision vertex join and subdivision edge join of two regular graphs”, Discrete Math. Lett., 1 (2019), 36–41 | MR | Zbl

[7] Janežič D., Miličević A., Nikolić S., Trinajstić N., Graph-Theoretical Matrices in Chemistry, CRC Press, Florida, 2015, 174 pp. | MR | Zbl

[8] Varghese R. P., Susha D., “Vertex distance complement spectra of regular graphs and its line graphs”, Int. J. Appl. Math. Anal. Appl., 12:2 (2017), 221–231

[9] Varghese R. P., Susha D., “Vertex distance complement spectra of some graphs”, Ann. Pure Appl. Math., 16:1 (2018), 69–80 | DOI