@article{UMJ_2021_7_1_a7,
author = {Robert Reynolds and Allan Stauffer},
title = {Definite integral of logarithmic functions and powers in terms of the lerch function},
journal = {Ural mathematical journal},
pages = {96--101},
year = {2021},
volume = {7},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UMJ_2021_7_1_a7/}
}
TY - JOUR AU - Robert Reynolds AU - Allan Stauffer TI - Definite integral of logarithmic functions and powers in terms of the lerch function JO - Ural mathematical journal PY - 2021 SP - 96 EP - 101 VL - 7 IS - 1 UR - http://geodesic.mathdoc.fr/item/UMJ_2021_7_1_a7/ LA - en ID - UMJ_2021_7_1_a7 ER -
Robert Reynolds; Allan Stauffer. Definite integral of logarithmic functions and powers in terms of the lerch function. Ural mathematical journal, Tome 7 (2021) no. 1, pp. 96-101. http://geodesic.mathdoc.fr/item/UMJ_2021_7_1_a7/
[1] Abramowitz M., Stegun I. A. (eds.), Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables, 9th ed., Dover, New York, 1972, 1046 pp. | MR
[2] Erdélyi A., Magnus W., Oberhettinger F., Tricomi F. G., Higher Transcendental Functions, v. 1, McGraw-Hill Book Company Inc., New York–Toronto–London, 1953, 316 pp. | MR
[3] Gradshteyn I. S., Ryzhik I. M., Table of Integrals, Series and Products, 7 ed., Academic Press, 2007, 1171 pp. | MR | Zbl
[4] Momeni D., “Bose–Einstein condensation for an exponential density of states function and Lerch zeta function”, Phys. A, 541 (2020), 123264, 9 pp. | DOI | MR
[5] Reynolds R., Stauffer A., “A method for evaluating definite integrals in terms of special functions with examples”, Int. Math. Forum, 15:5 (2020), 235–244 | DOI | MR
[6] Reynolds R., Stauffer A., “A Definite Integral Involving the Logarithmic Function in Terms of the Lerch Function”, Mathematics, 7:12 (2019), 1148, 5 pp. | DOI | MR
[7] Whittaker E. T., Watson G. N., A Course of Modern Analysis, 4th ed., Cambridge University Press, Cambridge, England, 1996, 608 pp. | MR | Zbl