Definite integral of logarithmic functions and powers in terms of the lerch function
Ural mathematical journal, Tome 7 (2021) no. 1, pp. 96-101 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A family of generalized definite logarithmic integrals given by $$ \int_{0}^{1}\frac{\left(x^{ i m} (\log (a)+i \log (x))^k+x^{-i m} (\log (a)-i \log (x))^k\right)}{(x+1)^2}dx $$ built over the Lerch function has its analytic properties and special values listed in explicit detail. We use the general method as given in [5] to derive this integral. We then give a number of examples that can be derived from the general integral in terms of well known functions.
Keywords: entries of Gradshteyn and Ryzhik, Lerch function, Knuth's Series.
@article{UMJ_2021_7_1_a7,
     author = {Robert Reynolds and Allan Stauffer},
     title = {Definite integral of logarithmic functions and powers in terms of the lerch function},
     journal = {Ural mathematical journal},
     pages = {96--101},
     year = {2021},
     volume = {7},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2021_7_1_a7/}
}
TY  - JOUR
AU  - Robert Reynolds
AU  - Allan Stauffer
TI  - Definite integral of logarithmic functions and powers in terms of the lerch function
JO  - Ural mathematical journal
PY  - 2021
SP  - 96
EP  - 101
VL  - 7
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UMJ_2021_7_1_a7/
LA  - en
ID  - UMJ_2021_7_1_a7
ER  - 
%0 Journal Article
%A Robert Reynolds
%A Allan Stauffer
%T Definite integral of logarithmic functions and powers in terms of the lerch function
%J Ural mathematical journal
%D 2021
%P 96-101
%V 7
%N 1
%U http://geodesic.mathdoc.fr/item/UMJ_2021_7_1_a7/
%G en
%F UMJ_2021_7_1_a7
Robert Reynolds; Allan Stauffer. Definite integral of logarithmic functions and powers in terms of the lerch function. Ural mathematical journal, Tome 7 (2021) no. 1, pp. 96-101. http://geodesic.mathdoc.fr/item/UMJ_2021_7_1_a7/

[1] Abramowitz M., Stegun I. A. (eds.), Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables, 9th ed., Dover, New York, 1972, 1046 pp. | MR

[2] Erdélyi A., Magnus W., Oberhettinger F., Tricomi F. G., Higher Transcendental Functions, v. 1, McGraw-Hill Book Company Inc., New York–Toronto–London, 1953, 316 pp. | MR

[3] Gradshteyn I. S., Ryzhik I. M., Table of Integrals, Series and Products, 7 ed., Academic Press, 2007, 1171 pp. | MR | Zbl

[4] Momeni D., “Bose–Einstein condensation for an exponential density of states function and Lerch zeta function”, Phys. A, 541 (2020), 123264, 9 pp. | DOI | MR

[5] Reynolds R., Stauffer A., “A method for evaluating definite integrals in terms of special functions with examples”, Int. Math. Forum, 15:5 (2020), 235–244 | DOI | MR

[6] Reynolds R., Stauffer A., “A Definite Integral Involving the Logarithmic Function in Terms of the Lerch Function”, Mathematics, 7:12 (2019), 1148, 5 pp. | DOI | MR

[7] Whittaker E. T., Watson G. N., A Course of Modern Analysis, 4th ed., Cambridge University Press, Cambridge, England, 1996, 608 pp. | MR | Zbl