An analogy of Hahn-Banach separation theorem for nearly topological linear spaces
Ural mathematical journal, Tome 7 (2021) no. 1, pp. 81-86 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we introduce the notion of nearly topological linear spaces and use it to formulate an alternative definition of the Hahn–Banach separation theorem. We also give an example of a topological linear space to which the result is not valid. It is shown that $\mathbb{R}$ with its ordinary topology is not a nearly topological linear space.
Keywords: Hahn-Banach separation theorem, $\alpha$-open sets, $\alpha$-compact sets, nearly topological linear spaces.
@article{UMJ_2021_7_1_a5,
     author = {Madhu Ram},
     title = {An analogy of {Hahn-Banach} separation theorem for nearly topological linear spaces},
     journal = {Ural mathematical journal},
     pages = {81--86},
     year = {2021},
     volume = {7},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2021_7_1_a5/}
}
TY  - JOUR
AU  - Madhu Ram
TI  - An analogy of Hahn-Banach separation theorem for nearly topological linear spaces
JO  - Ural mathematical journal
PY  - 2021
SP  - 81
EP  - 86
VL  - 7
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UMJ_2021_7_1_a5/
LA  - en
ID  - UMJ_2021_7_1_a5
ER  - 
%0 Journal Article
%A Madhu Ram
%T An analogy of Hahn-Banach separation theorem for nearly topological linear spaces
%J Ural mathematical journal
%D 2021
%P 81-86
%V 7
%N 1
%U http://geodesic.mathdoc.fr/item/UMJ_2021_7_1_a5/
%G en
%F UMJ_2021_7_1_a5
Madhu Ram. An analogy of Hahn-Banach separation theorem for nearly topological linear spaces. Ural mathematical journal, Tome 7 (2021) no. 1, pp. 81-86. http://geodesic.mathdoc.fr/item/UMJ_2021_7_1_a5/

[1] Amar A. B., Cherif M. A., Mnif M., “Fixed-point theory on a Frechet topological vector space”, Int. J. Math. Math. Sci., 2011 (2011), 390720, 1–9 | DOI | MR

[2] Deutsch F. R., Maserick P. H., “Applications of the Hahn–Banach theorem in approximation theory”, SIAM Rev., 9:3 (1967), 516–530 https://www.jstor.org/stable/2027994 | DOI | MR | Zbl

[3] Deutsch F., Hundal H., Zikatanov L., Some Applications of the Hahn–Banach Separation Theorem, 2017, 26 pp., arXiv: [math.FA] 1712.10250v1 | MR

[4] Helton J. W., Klep I., McCullough S., The Tracial Hahn–Banach Theorem, Polar Duals, Matrix Convex Sets, and Projections of Free Spectrahedra, 2014, 56 pp., arXiv: [math.OA] 1407.8198 | MR

[5] Luna-Elizarrarás M. E., Perez-Regalado C. O., Shapiro M., “On linear functionals and Hahn-Banach theorems for hyperbolic and bicomplex modules”, Adv. Appl. Clifford Algebr., 24 (2014), 1105–1129 | DOI | MR | Zbl

[6] Maheshwari S. N., Thakur S. S., “On $\alpha$-compact spaces”, Bull. Inst. Math. Acad. Sin. (N.S.), 13:4 (1985), 341–347 | MR | Zbl

[7] Njåstad O., “On some classes of nearly open sets”, Pacific J. Math., 15:3 (1965), 961–970 | DOI | MR

[8] Nörtemann S., “The Hahn-Banach theorem for partially ordered totally convex, positively convex and superconvex modules”, Appl. Categ. Structures, 10 (2002), 417–429 | DOI | MR | Zbl

[9] Rudin W., Functional Analysis, 2nd ed., McGraw-Hill Inc., Singapore, 1991, 448 pp. | MR | Zbl

[10] Schaefer H. H., Topological Vector Spaces, Springer-Verlag, New York, 1971, 296 pp. | DOI | MR | Zbl