On chromatic uniqueness of some complete tripartite graphs
Ural mathematical journal, Tome 7 (2021) no. 1, pp. 38-65
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $P(G, x)$ be a chromatic polynomial of a graph $G$. Two graphs $G$ and $H$ are called chromatically equivalent iff $P(G, x) = H(G, x)$. A graph $G$ is called chromatically unique if $G\simeq H$ for every $H$ chromatically equivalent to $G$. In this paper, the chromatic uniqueness of complete tripartite graphs $K(n_1, n_2, n_3)$ is proved for $n_1 \geqslant n_2 \geqslant n_3 \geqslant 2$ and $n_1 - n_3 \leqslant 5$.
Keywords:
chromatic uniqueness, chromatic equivalence, complete multipartite graphs, chromatic polynomial.
@article{UMJ_2021_7_1_a3,
author = {Pavel A. Gein},
title = {On chromatic uniqueness of some complete tripartite graphs},
journal = {Ural mathematical journal},
pages = {38--65},
publisher = {mathdoc},
volume = {7},
number = {1},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UMJ_2021_7_1_a3/}
}
Pavel A. Gein. On chromatic uniqueness of some complete tripartite graphs. Ural mathematical journal, Tome 7 (2021) no. 1, pp. 38-65. http://geodesic.mathdoc.fr/item/UMJ_2021_7_1_a3/