On chromatic uniqueness of some complete tripartite graphs
Ural mathematical journal, Tome 7 (2021) no. 1, pp. 38-65 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $P(G, x)$ be a chromatic polynomial of a graph $G$. Two graphs $G$ and $H$ are called chromatically equivalent iff $P(G, x) = H(G, x)$. A graph $G$ is called chromatically unique if $G\simeq H$ for every $H$ chromatically equivalent to $G$. In this paper, the chromatic uniqueness of complete tripartite graphs $K(n_1, n_2, n_3)$ is proved for $n_1 \geqslant n_2 \geqslant n_3 \geqslant 2$ and $n_1 - n_3 \leqslant 5$.
Keywords: chromatic uniqueness, chromatic equivalence, complete multipartite graphs, chromatic polynomial.
@article{UMJ_2021_7_1_a3,
     author = {Pavel A. Gein},
     title = {On chromatic uniqueness of some complete tripartite graphs},
     journal = {Ural mathematical journal},
     pages = {38--65},
     year = {2021},
     volume = {7},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2021_7_1_a3/}
}
TY  - JOUR
AU  - Pavel A. Gein
TI  - On chromatic uniqueness of some complete tripartite graphs
JO  - Ural mathematical journal
PY  - 2021
SP  - 38
EP  - 65
VL  - 7
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UMJ_2021_7_1_a3/
LA  - en
ID  - UMJ_2021_7_1_a3
ER  - 
%0 Journal Article
%A Pavel A. Gein
%T On chromatic uniqueness of some complete tripartite graphs
%J Ural mathematical journal
%D 2021
%P 38-65
%V 7
%N 1
%U http://geodesic.mathdoc.fr/item/UMJ_2021_7_1_a3/
%G en
%F UMJ_2021_7_1_a3
Pavel A. Gein. On chromatic uniqueness of some complete tripartite graphs. Ural mathematical journal, Tome 7 (2021) no. 1, pp. 38-65. http://geodesic.mathdoc.fr/item/UMJ_2021_7_1_a3/

[1] Asanov M. O., Baransky V. A., Rasin V. V., Diskretnaya matematika: grafy, matroidy, algoritmy [Discrete Mathematics: Graphs, Matroids, Algorithms], “Lan”, Saint-Petersburg, 2010, 364 pp. (in Russian)

[2] Baransky V. A., Koroleva T. A., “Chromatic uniqueness of certain complete tripartite graphs”, Izv. Ural. Gos. Univ. Mat. Mekh. Inform., 74:12 (2010.), 5–26 (in Russian) | MR | Zbl

[3] Baransky V. A., Koroleva T. A., Senchonok T. A., “On the partition lattice of all integers”, Sib. Èlektron. Mat. Izv., 13 (2016), 744–753 (in Russian) | DOI | MR | Zbl

[4] Baranskii V. A., Sen'chonok T. A., “Chromatic uniqueness of elements of height $\leq 3$ in lattices of complete multipartite graphs”, Proc. Steklov Inst. Math., 279 (2012), 1–16 | DOI | MR

[5] Brylawski T., “The lattice of integer partitions.”, Discrete Math., 6:3 (1973), 210–219 | DOI | MR

[6] Dong F. M., Koh K. M., Teo K. L., Chromatic Polynomials and Chromaticity of Graphs, World Scientific, Hackensack, 2005, 384 pp. | DOI | MR | Zbl

[7] Farrell E. J., “On chromatic coefficients”, Discrete Math., 29:3 (1980), 257–264 | DOI | MR | Zbl

[8] Gein P. A., “About chromatic uniqueness of complete tripartite graph $K(s,s-1,s-k)$, where $k\geq 1$ and $s-k\geq 2$”, Sib. Èlektron. Mat. Izv., 13 (2016), 331–337 (in Russian) | DOI | MR | Zbl

[9] Gein P. A., “About chromatic uniqueness of some complete tripartite graphs”, Sib. Èlektron. Mat. Izv., 14 (2017), 1492–1504 (in Russian) | DOI | MR | Zbl

[10] Gein P. A., “On garlands in $\chi$-uniquely colorable graphs.”, Sib. Èlektron. Mat. Izv., 16 (2019), 1703–1715 | DOI | MR | Zbl

[11] Koh K. M., Teo K. L., “The search for chromatically unique graphs.”, Graphs Combin, 6: 3 (1990), 259–285 | DOI | MR | Zbl

[12] Koroleva T. A., “Chromatic uniqueness of some complete tripartite graphs. I”, Trudy Inst. Mat. i Mekh. UrO RAN, 13:3 (2007), 65–83 (in Russian) | MR

[13] Koroleva T. A., “Chromatic uniqueness of some complete tripartite graphs. II”, Izv. Ural. Gos. Univ. Mat. Mekh. Inform., 74 (2010), 39–56 (in Russian) | MR | Zbl

[14] Li N. Z., Liu R. Y., “The chromaticity of the complete $t$-partite graph $K(1, P_2 \ldots p_t)$”, J. Xinjiang Univ. Natur. Sci., 7:3 (1990), 95–96 | MR | Zbl

[15] Senchonok T. A., “Chromatic uniqueness of elements of height 2 in lattices of complete multipartite graphs”, Trudy Inst. Mat. i Mekh. UrO RAN, 17:3 (2011), 271–281 (in Russian)

[16] Zhao H., Chromaticity and Adjoint Polynomials of Graphs Zutphen, Wöhrmann Print Service, Netherlands, 2005, 179 pp. | MR

[17] Zhao H., Li X., Zhang Sh., Liu R., “On the minimum real roots of the $\sigma$-polynomials and chromatic uniqueness of graphs”, Discrete Math., 281:1–3 (2004), 277–294 | DOI | MR | Zbl