On chromatic uniqueness of some complete tripartite graphs
Ural mathematical journal, Tome 7 (2021) no. 1, pp. 38-65

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $P(G, x)$ be a chromatic polynomial of a graph $G$. Two graphs $G$ and $H$ are called chromatically equivalent iff $P(G, x) = H(G, x)$. A graph $G$ is called chromatically unique if $G\simeq H$ for every $H$ chromatically equivalent to $G$. In this paper, the chromatic uniqueness of complete tripartite graphs $K(n_1, n_2, n_3)$ is proved for $n_1 \geqslant n_2 \geqslant n_3 \geqslant 2$ and $n_1 - n_3 \leqslant 5$.
Keywords: chromatic uniqueness, chromatic equivalence, complete multipartite graphs, chromatic polynomial.
@article{UMJ_2021_7_1_a3,
     author = {Pavel A. Gein},
     title = {On chromatic uniqueness of some complete tripartite graphs},
     journal = {Ural mathematical journal},
     pages = {38--65},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2021_7_1_a3/}
}
TY  - JOUR
AU  - Pavel A. Gein
TI  - On chromatic uniqueness of some complete tripartite graphs
JO  - Ural mathematical journal
PY  - 2021
SP  - 38
EP  - 65
VL  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UMJ_2021_7_1_a3/
LA  - en
ID  - UMJ_2021_7_1_a3
ER  - 
%0 Journal Article
%A Pavel A. Gein
%T On chromatic uniqueness of some complete tripartite graphs
%J Ural mathematical journal
%D 2021
%P 38-65
%V 7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UMJ_2021_7_1_a3/
%G en
%F UMJ_2021_7_1_a3
Pavel A. Gein. On chromatic uniqueness of some complete tripartite graphs. Ural mathematical journal, Tome 7 (2021) no. 1, pp. 38-65. http://geodesic.mathdoc.fr/item/UMJ_2021_7_1_a3/