@article{UMJ_2021_7_1_a3,
author = {Pavel A. Gein},
title = {On chromatic uniqueness of some complete tripartite graphs},
journal = {Ural mathematical journal},
pages = {38--65},
year = {2021},
volume = {7},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UMJ_2021_7_1_a3/}
}
Pavel A. Gein. On chromatic uniqueness of some complete tripartite graphs. Ural mathematical journal, Tome 7 (2021) no. 1, pp. 38-65. http://geodesic.mathdoc.fr/item/UMJ_2021_7_1_a3/
[1] Asanov M. O., Baransky V. A., Rasin V. V., Diskretnaya matematika: grafy, matroidy, algoritmy [Discrete Mathematics: Graphs, Matroids, Algorithms], “Lan”, Saint-Petersburg, 2010, 364 pp. (in Russian)
[2] Baransky V. A., Koroleva T. A., “Chromatic uniqueness of certain complete tripartite graphs”, Izv. Ural. Gos. Univ. Mat. Mekh. Inform., 74:12 (2010.), 5–26 (in Russian) | MR | Zbl
[3] Baransky V. A., Koroleva T. A., Senchonok T. A., “On the partition lattice of all integers”, Sib. Èlektron. Mat. Izv., 13 (2016), 744–753 (in Russian) | DOI | MR | Zbl
[4] Baranskii V. A., Sen'chonok T. A., “Chromatic uniqueness of elements of height $\leq 3$ in lattices of complete multipartite graphs”, Proc. Steklov Inst. Math., 279 (2012), 1–16 | DOI | MR
[5] Brylawski T., “The lattice of integer partitions.”, Discrete Math., 6:3 (1973), 210–219 | DOI | MR
[6] Dong F. M., Koh K. M., Teo K. L., Chromatic Polynomials and Chromaticity of Graphs, World Scientific, Hackensack, 2005, 384 pp. | DOI | MR | Zbl
[7] Farrell E. J., “On chromatic coefficients”, Discrete Math., 29:3 (1980), 257–264 | DOI | MR | Zbl
[8] Gein P. A., “About chromatic uniqueness of complete tripartite graph $K(s,s-1,s-k)$, where $k\geq 1$ and $s-k\geq 2$”, Sib. Èlektron. Mat. Izv., 13 (2016), 331–337 (in Russian) | DOI | MR | Zbl
[9] Gein P. A., “About chromatic uniqueness of some complete tripartite graphs”, Sib. Èlektron. Mat. Izv., 14 (2017), 1492–1504 (in Russian) | DOI | MR | Zbl
[10] Gein P. A., “On garlands in $\chi$-uniquely colorable graphs.”, Sib. Èlektron. Mat. Izv., 16 (2019), 1703–1715 | DOI | MR | Zbl
[11] Koh K. M., Teo K. L., “The search for chromatically unique graphs.”, Graphs Combin, 6: 3 (1990), 259–285 | DOI | MR | Zbl
[12] Koroleva T. A., “Chromatic uniqueness of some complete tripartite graphs. I”, Trudy Inst. Mat. i Mekh. UrO RAN, 13:3 (2007), 65–83 (in Russian) | MR
[13] Koroleva T. A., “Chromatic uniqueness of some complete tripartite graphs. II”, Izv. Ural. Gos. Univ. Mat. Mekh. Inform., 74 (2010), 39–56 (in Russian) | MR | Zbl
[14] Li N. Z., Liu R. Y., “The chromaticity of the complete $t$-partite graph $K(1, P_2 \ldots p_t)$”, J. Xinjiang Univ. Natur. Sci., 7:3 (1990), 95–96 | MR | Zbl
[15] Senchonok T. A., “Chromatic uniqueness of elements of height 2 in lattices of complete multipartite graphs”, Trudy Inst. Mat. i Mekh. UrO RAN, 17:3 (2011), 271–281 (in Russian)
[16] Zhao H., Chromaticity and Adjoint Polynomials of Graphs Zutphen, Wöhrmann Print Service, Netherlands, 2005, 179 pp. | MR
[17] Zhao H., Li X., Zhang Sh., Liu R., “On the minimum real roots of the $\sigma$-polynomials and chromatic uniqueness of graphs”, Discrete Math., 281:1–3 (2004), 277–294 | DOI | MR | Zbl