On the potentiality of a class of operators relative to local bilinear forms
Ural mathematical journal, Tome 7 (2021) no. 1, pp. 26-37
Voir la notice de l'article provenant de la source Math-Net.Ru
The inverse problem of the calculus of variations (IPCV) is solved for a second-order ordinary differential equation with the use of a local bilinear form. We apply methods of analytical dynamics, nonlinear functional analysis, and modern methods for solving the IPCV. In the paper, we obtain necessary and sufficient conditions for a given operator to be potential relative to a local bilinear form, construct the corresponding functional, i.e., found a solution to the IPCV, and define the structure of the considered equation with the potential operator. As a consequence, similar results are obtained when using a nonlocal bilinear form. Theoretical results are illustrated with some examples.
Keywords:
inverse problem of the calculus of variations, local bilinear form, potential operator, conditions of potentiality.
@article{UMJ_2021_7_1_a2,
author = {Svetlana A. Budochkina and Ekaterina S. Dekhanova},
title = {On the potentiality of a class of operators relative to local bilinear forms},
journal = {Ural mathematical journal},
pages = {26--37},
publisher = {mathdoc},
volume = {7},
number = {1},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UMJ_2021_7_1_a2/}
}
TY - JOUR AU - Svetlana A. Budochkina AU - Ekaterina S. Dekhanova TI - On the potentiality of a class of operators relative to local bilinear forms JO - Ural mathematical journal PY - 2021 SP - 26 EP - 37 VL - 7 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UMJ_2021_7_1_a2/ LA - en ID - UMJ_2021_7_1_a2 ER -
Svetlana A. Budochkina; Ekaterina S. Dekhanova. On the potentiality of a class of operators relative to local bilinear forms. Ural mathematical journal, Tome 7 (2021) no. 1, pp. 26-37. http://geodesic.mathdoc.fr/item/UMJ_2021_7_1_a2/