On the potentiality of a class of operators relative to local bilinear forms
Ural mathematical journal, Tome 7 (2021) no. 1, pp. 26-37 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The inverse problem of the calculus of variations (IPCV) is solved for a second-order ordinary differential equation with the use of a local bilinear form. We apply methods of analytical dynamics, nonlinear functional analysis, and modern methods for solving the IPCV. In the paper, we obtain necessary and sufficient conditions for a given operator to be potential relative to a local bilinear form, construct the corresponding functional, i.e., found a solution to the IPCV, and define the structure of the considered equation with the potential operator. As a consequence, similar results are obtained when using a nonlocal bilinear form. Theoretical results are illustrated with some examples.
Keywords: inverse problem of the calculus of variations, local bilinear form, potential operator, conditions of potentiality.
@article{UMJ_2021_7_1_a2,
     author = {Svetlana A. Budochkina and Ekaterina S. Dekhanova},
     title = {On the potentiality of a class of operators relative to local bilinear forms},
     journal = {Ural mathematical journal},
     pages = {26--37},
     year = {2021},
     volume = {7},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2021_7_1_a2/}
}
TY  - JOUR
AU  - Svetlana A. Budochkina
AU  - Ekaterina S. Dekhanova
TI  - On the potentiality of a class of operators relative to local bilinear forms
JO  - Ural mathematical journal
PY  - 2021
SP  - 26
EP  - 37
VL  - 7
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UMJ_2021_7_1_a2/
LA  - en
ID  - UMJ_2021_7_1_a2
ER  - 
%0 Journal Article
%A Svetlana A. Budochkina
%A Ekaterina S. Dekhanova
%T On the potentiality of a class of operators relative to local bilinear forms
%J Ural mathematical journal
%D 2021
%P 26-37
%V 7
%N 1
%U http://geodesic.mathdoc.fr/item/UMJ_2021_7_1_a2/
%G en
%F UMJ_2021_7_1_a2
Svetlana A. Budochkina; Ekaterina S. Dekhanova. On the potentiality of a class of operators relative to local bilinear forms. Ural mathematical journal, Tome 7 (2021) no. 1, pp. 26-37. http://geodesic.mathdoc.fr/item/UMJ_2021_7_1_a2/

[1] Berkovich L. M., “The generalized Emden-Fowler equation”, Symmetry in Nonlinear Mathematical Physics, 1 (1997), 155–163 | MR | Zbl

[2] Budochkina S. A., Savchin V. M., “On direct variational formulations for second order evolutionary equations”, Eurasian Math. J., 3:4 (2012), 23–34 | MR | Zbl

[3] Budotchkina S. A., Savchin V. M., “On indirect variational formulations for operator equations”, J. Funct. Spaces Appl., 5:3 (2007), 231–242 | DOI | MR

[4] Filippov V. M., Variatsionnye printsipy dlya nepotentsial'nykh operatorov [Variational Principles for Nonpotential Operators], PFU, Moscow, 1985, 206 pp. (in Russian) | MR

[5] Filippov V. M., Savchin V. M., Budochkina S. A., “On the existence of variational principles for differential-difference evolution equations”, Proc. Steklov Inst. Math., 283 (2013), 20–34 | DOI | MR | Zbl

[6] Filippov V. M., Savchin V. M., Shorokhov S. G., “Variational principles for nonpotential operators”, J. Math. Sci., 68:3 (1994), 275–398 | DOI | MR

[7] Galiullin A. S., Obratnye zadachi dinamiki [Inverse Problems of Dynamics], Nauka, Moscow, 1981, 144 pp. (in Russian) | MR | Zbl

[8] Galiullin A. S., Gafarov G. G., Malayshka R. P., Khvan A. M., Analiticheskaya dinamika sistem Gel'mgol'tsa, Birkgofa, Nambu [Analytical dynamics of Helmholtz, Birkhoff, Nambu systems], Advances in Physical Sciences, Moscow, 1997, 324 pp. (in Russian)

[9] Popov A. M., “Potentiality conditions for differential-difference equations”, Differ. Equ., 34:3 (1998), 423–426 | MR | Zbl

[10] Popov A. M., “Inverse problem of the calculus of variations for systems of differential-difference equations of second order”, Math. Notes, 72:5 (2002), 687—691 | DOI | MR | Zbl

[11] Santilli R. M., Foundations of Theoretical Mechanics, I: The Inverse Problems in Newtonian Mechanics, Springer–Verlag, Berlin—Heidelberg, 1977, 266 pp. | MR

[12] Santilli R. M., Foundations of Theoretical Mechanics, II: Birkhoffian Generalization of Hamiltonian Mechanics., Springer–Verlag, Berlin-Heidelberg, 1983, 370 pp. | DOI | MR | Zbl

[13] Savchin V. M., Matematicheskie metody mekhaniki beskonechnomernykh nepotentsial'nykh sistem [Mathematical Methods of Mechanics of Infinite-Dimensional Nonpotential Systems], PFU, Moscow, 1991, 237 pp. (in Russian) | MR

[14] Savchin V. M., “An operator approach to Birkhoff's equations”, Vestnik RUDN. Ser. Math., 1995, no. 2 (2), 111–123 | Zbl

[15] Savchin V. M., Budochkina S. A., “On the structure of a variational equation of evolution type with the second t-derivative”, Differ. Equ., 39:1 (2003), 127–134 | DOI | MR | Zbl

[16] Tleubergenov M. I., Ibraeva G. T., “On the solvability of the main inverse problem for stochastic differential systems”, Ukrainian Math. J., 71:1 (2019), 157—165 | DOI | MR | Zbl

[17] Tleubergenov M. I., Ibraeva G. T., “On inverse problem of closure of differential systems with degenerate diffusion”, Eurasian Math. J., 10:2 (2019), 93–102 | DOI | MR | Zbl

[18] Tonti E., “On the variational formulation for linear initial value problems”, Ann. Mat. Pura Appl. (4), 95 (1973), 331—359 | DOI | MR | Zbl

[19] Tonti E., “Variational formulation for every nonlinear problem”, Internat. J. Engrg. Sci., 22:11–12 (1984), 1343—1371 | DOI | MR | Zbl

[20] Tonti E., “Extended variational formulation”, Vestnik RUDN. Ser. Math., 1995, no. 2 (2), 148–162 | Zbl

[21] Tunitsky D. V., “On the inverse variational problem for one class of quasilinear equations”, J. Geom. Phys., 148 (2020), 103568 | DOI | MR | Zbl