@article{UMJ_2021_7_1_a2,
author = {Svetlana A. Budochkina and Ekaterina S. Dekhanova},
title = {On the potentiality of a class of operators relative to local bilinear forms},
journal = {Ural mathematical journal},
pages = {26--37},
year = {2021},
volume = {7},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UMJ_2021_7_1_a2/}
}
TY - JOUR AU - Svetlana A. Budochkina AU - Ekaterina S. Dekhanova TI - On the potentiality of a class of operators relative to local bilinear forms JO - Ural mathematical journal PY - 2021 SP - 26 EP - 37 VL - 7 IS - 1 UR - http://geodesic.mathdoc.fr/item/UMJ_2021_7_1_a2/ LA - en ID - UMJ_2021_7_1_a2 ER -
Svetlana A. Budochkina; Ekaterina S. Dekhanova. On the potentiality of a class of operators relative to local bilinear forms. Ural mathematical journal, Tome 7 (2021) no. 1, pp. 26-37. http://geodesic.mathdoc.fr/item/UMJ_2021_7_1_a2/
[1] Berkovich L. M., “The generalized Emden-Fowler equation”, Symmetry in Nonlinear Mathematical Physics, 1 (1997), 155–163 | MR | Zbl
[2] Budochkina S. A., Savchin V. M., “On direct variational formulations for second order evolutionary equations”, Eurasian Math. J., 3:4 (2012), 23–34 | MR | Zbl
[3] Budotchkina S. A., Savchin V. M., “On indirect variational formulations for operator equations”, J. Funct. Spaces Appl., 5:3 (2007), 231–242 | DOI | MR
[4] Filippov V. M., Variatsionnye printsipy dlya nepotentsial'nykh operatorov [Variational Principles for Nonpotential Operators], PFU, Moscow, 1985, 206 pp. (in Russian) | MR
[5] Filippov V. M., Savchin V. M., Budochkina S. A., “On the existence of variational principles for differential-difference evolution equations”, Proc. Steklov Inst. Math., 283 (2013), 20–34 | DOI | MR | Zbl
[6] Filippov V. M., Savchin V. M., Shorokhov S. G., “Variational principles for nonpotential operators”, J. Math. Sci., 68:3 (1994), 275–398 | DOI | MR
[7] Galiullin A. S., Obratnye zadachi dinamiki [Inverse Problems of Dynamics], Nauka, Moscow, 1981, 144 pp. (in Russian) | MR | Zbl
[8] Galiullin A. S., Gafarov G. G., Malayshka R. P., Khvan A. M., Analiticheskaya dinamika sistem Gel'mgol'tsa, Birkgofa, Nambu [Analytical dynamics of Helmholtz, Birkhoff, Nambu systems], Advances in Physical Sciences, Moscow, 1997, 324 pp. (in Russian)
[9] Popov A. M., “Potentiality conditions for differential-difference equations”, Differ. Equ., 34:3 (1998), 423–426 | MR | Zbl
[10] Popov A. M., “Inverse problem of the calculus of variations for systems of differential-difference equations of second order”, Math. Notes, 72:5 (2002), 687—691 | DOI | MR | Zbl
[11] Santilli R. M., Foundations of Theoretical Mechanics, I: The Inverse Problems in Newtonian Mechanics, Springer–Verlag, Berlin—Heidelberg, 1977, 266 pp. | MR
[12] Santilli R. M., Foundations of Theoretical Mechanics, II: Birkhoffian Generalization of Hamiltonian Mechanics., Springer–Verlag, Berlin-Heidelberg, 1983, 370 pp. | DOI | MR | Zbl
[13] Savchin V. M., Matematicheskie metody mekhaniki beskonechnomernykh nepotentsial'nykh sistem [Mathematical Methods of Mechanics of Infinite-Dimensional Nonpotential Systems], PFU, Moscow, 1991, 237 pp. (in Russian) | MR
[14] Savchin V. M., “An operator approach to Birkhoff's equations”, Vestnik RUDN. Ser. Math., 1995, no. 2 (2), 111–123 | Zbl
[15] Savchin V. M., Budochkina S. A., “On the structure of a variational equation of evolution type with the second t-derivative”, Differ. Equ., 39:1 (2003), 127–134 | DOI | MR | Zbl
[16] Tleubergenov M. I., Ibraeva G. T., “On the solvability of the main inverse problem for stochastic differential systems”, Ukrainian Math. J., 71:1 (2019), 157—165 | DOI | MR | Zbl
[17] Tleubergenov M. I., Ibraeva G. T., “On inverse problem of closure of differential systems with degenerate diffusion”, Eurasian Math. J., 10:2 (2019), 93–102 | DOI | MR | Zbl
[18] Tonti E., “On the variational formulation for linear initial value problems”, Ann. Mat. Pura Appl. (4), 95 (1973), 331—359 | DOI | MR | Zbl
[19] Tonti E., “Variational formulation for every nonlinear problem”, Internat. J. Engrg. Sci., 22:11–12 (1984), 1343—1371 | DOI | MR | Zbl
[20] Tonti E., “Extended variational formulation”, Vestnik RUDN. Ser. Math., 1995, no. 2 (2), 148–162 | Zbl
[21] Tunitsky D. V., “On the inverse variational problem for one class of quasilinear equations”, J. Geom. Phys., 148 (2020), 103568 | DOI | MR | Zbl