The asymptotics of a solution of the multidimensional heat equation with unbounded initial data
Ural mathematical journal, Tome 7 (2021) no. 1, pp. 168-177

Voir la notice de l'article provenant de la source Math-Net.Ru

For the multidimensional heat equation, the long-time asymptotic approximation of the solution of the Cauchy problem is obtained in the case when the initial function grows at infinity and contains logarithms in its asymptotics. In addition to natural applications to processes of heat conduction and diffusion, the investigation of the asymptotic behavior of the solution of the problem under consideration is of interest for the asymptotic analysis of equations of parabolic type. The auxiliary parameter method plays a decisive role in the investigation.
Keywords: multidimensional heat equation, Сauchy problem, asymptotics, auxiliary parameter method.
@article{UMJ_2021_7_1_a12,
     author = {Sergey V. Zakharov},
     title = {The asymptotics of a solution of the multidimensional heat equation with unbounded initial data},
     journal = {Ural mathematical journal},
     pages = {168--177},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2021_7_1_a12/}
}
TY  - JOUR
AU  - Sergey V. Zakharov
TI  - The asymptotics of a solution of the multidimensional heat equation with unbounded initial data
JO  - Ural mathematical journal
PY  - 2021
SP  - 168
EP  - 177
VL  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UMJ_2021_7_1_a12/
LA  - en
ID  - UMJ_2021_7_1_a12
ER  - 
%0 Journal Article
%A Sergey V. Zakharov
%T The asymptotics of a solution of the multidimensional heat equation with unbounded initial data
%J Ural mathematical journal
%D 2021
%P 168-177
%V 7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UMJ_2021_7_1_a12/
%G en
%F UMJ_2021_7_1_a12
Sergey V. Zakharov. The asymptotics of a solution of the multidimensional heat equation with unbounded initial data. Ural mathematical journal, Tome 7 (2021) no. 1, pp. 168-177. http://geodesic.mathdoc.fr/item/UMJ_2021_7_1_a12/