The asymptotics of a solution of the multidimensional heat equation with unbounded initial data
Ural mathematical journal, Tome 7 (2021) no. 1, pp. 168-177
Voir la notice de l'article provenant de la source Math-Net.Ru
For the multidimensional heat equation, the long-time asymptotic approximation of the solution of the Cauchy problem is obtained in the case when the initial function grows at infinity and contains logarithms in its asymptotics. In addition to natural applications to processes of heat conduction and diffusion, the investigation of the asymptotic behavior of the solution of the problem under consideration is of interest for the asymptotic analysis of equations of parabolic type. The auxiliary parameter method plays a decisive role in the investigation.
Keywords:
multidimensional heat equation, Сauchy problem, asymptotics, auxiliary parameter method.
@article{UMJ_2021_7_1_a12,
author = {Sergey V. Zakharov},
title = {The asymptotics of a solution of the multidimensional heat equation with unbounded initial data},
journal = {Ural mathematical journal},
pages = {168--177},
publisher = {mathdoc},
volume = {7},
number = {1},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UMJ_2021_7_1_a12/}
}
TY - JOUR AU - Sergey V. Zakharov TI - The asymptotics of a solution of the multidimensional heat equation with unbounded initial data JO - Ural mathematical journal PY - 2021 SP - 168 EP - 177 VL - 7 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UMJ_2021_7_1_a12/ LA - en ID - UMJ_2021_7_1_a12 ER -
Sergey V. Zakharov. The asymptotics of a solution of the multidimensional heat equation with unbounded initial data. Ural mathematical journal, Tome 7 (2021) no. 1, pp. 168-177. http://geodesic.mathdoc.fr/item/UMJ_2021_7_1_a12/