Set membership estimation with a separate restriction on initial state and disturbances
Ural mathematical journal, Tome 7 (2021) no. 1, pp. 160-167 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a set membership estimation problem for linear non-stationary systems for which initial states belong to a compact set and uncertain disturbances in an observation equation are integrally restricted. We prove that the exact information set of the system can be approximated by a set of external ellipsoids in the absence of disturbances in the dynamic equation. There are three examples of linear systems. Two examples illustrate the main theorem of the paper, the latter one shows the possibility of generalizing the theorem to the case with disturbances in the dynamic equation.
Keywords: set membership estimation, approximation, ellipsoid approach.
Mots-clés : filtration, information set
@article{UMJ_2021_7_1_a11,
     author = {Polina A. Yurovskikh},
     title = {Set membership estimation with a separate restriction on initial state and disturbances},
     journal = {Ural mathematical journal},
     pages = {160--167},
     year = {2021},
     volume = {7},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2021_7_1_a11/}
}
TY  - JOUR
AU  - Polina A. Yurovskikh
TI  - Set membership estimation with a separate restriction on initial state and disturbances
JO  - Ural mathematical journal
PY  - 2021
SP  - 160
EP  - 167
VL  - 7
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UMJ_2021_7_1_a11/
LA  - en
ID  - UMJ_2021_7_1_a11
ER  - 
%0 Journal Article
%A Polina A. Yurovskikh
%T Set membership estimation with a separate restriction on initial state and disturbances
%J Ural mathematical journal
%D 2021
%P 160-167
%V 7
%N 1
%U http://geodesic.mathdoc.fr/item/UMJ_2021_7_1_a11/
%G en
%F UMJ_2021_7_1_a11
Polina A. Yurovskikh. Set membership estimation with a separate restriction on initial state and disturbances. Ural mathematical journal, Tome 7 (2021) no. 1, pp. 160-167. http://geodesic.mathdoc.fr/item/UMJ_2021_7_1_a11/

[1] Ananyev B. I., Yurovskih P. A., “On the approximation of estimation problems for controlled systems”, AIP Conf. Proc., 2164:1 (2019), 110001, 1–9 | DOI

[2] Ananyev B. I., Yurovskih P. A., “Approximation of a guaranteed estimation problem with mixed constraints”, Trudy Inst. Mat. Mekh. UrO RAN, 26:4 (2020), 48–63 (in Russian) | DOI | MR

[3] Bertsekas D. P., Rhodes I. B., “Recursive state estimation for a set-membership description of uncertainty”, IEEE Trans. Inform. Theory, 16:2 (1971), 117–128 | DOI | MR

[4] Chernousko F. L., State Estimation for Dynamic Systems, Boca Raton, CRC Press, 1994, 320 pp.

[5] Dontchev A. L., Rockafellar R. T., Implicit Functions and Solution Mappings, Springer Ser. Oper. Res. Financ. Eng., 2nd ed., Springer, 2014, New York, 466 pp. | DOI | MR

[6] Filippova T. F., “External estimates for reachable sets of a control system with uncertainty and combined nonlinearity”, Proc. Steklov Inst. Math., 301, Suppl. 1 (2018), 32–43 | DOI | MR

[7] Krasovskii N. N., Teoriya upravleniya dvizheniem [Theory of Control of Motion], Nauka, Moscow, 1968, 476 pp. (in Russian) | MR

[8] Kurzhanski A. B., Upravlenie i nablyudenie v usloviyah neopredelennosti [Control and Observation under Conditions of Uncertainty], Nauka, Moscow, 1977, 392 pp. (in Russian) | MR

[9] Kurzhanski A. B., Varaiya P., Dynamics and Control of Trajectory Tubes: Theory and Computation, v. 85, Systems Control Found. Appl., Birkhäuser, Basel, 2014, 445 pp. | DOI | MR | Zbl

[10] Schweppe F. C., Uncertain Dynamic Systems, Prentice-Hall, Englewood Cliffs, New Jersey, 1973, 563 pp.