Set membership estimation with a separate restriction on initial state and disturbances
Ural mathematical journal, Tome 7 (2021) no. 1, pp. 160-167
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a set membership estimation problem for linear non-stationary systems for which initial states belong to a compact set and uncertain disturbances in an observation equation are integrally restricted. We prove that the exact information set of the system can be approximated by a set of external ellipsoids in the absence of disturbances in the dynamic equation. There are three examples of linear systems. Two examples illustrate the main theorem of the paper, the latter one shows the possibility of generalizing the theorem to the case with disturbances in the dynamic equation.
Keywords:
set membership estimation, approximation, ellipsoid approach.
Mots-clés : filtration, information set
Mots-clés : filtration, information set
@article{UMJ_2021_7_1_a11,
author = {Polina A. Yurovskikh},
title = {Set membership estimation with a separate restriction on initial state and disturbances},
journal = {Ural mathematical journal},
pages = {160--167},
publisher = {mathdoc},
volume = {7},
number = {1},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UMJ_2021_7_1_a11/}
}
TY - JOUR AU - Polina A. Yurovskikh TI - Set membership estimation with a separate restriction on initial state and disturbances JO - Ural mathematical journal PY - 2021 SP - 160 EP - 167 VL - 7 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UMJ_2021_7_1_a11/ LA - en ID - UMJ_2021_7_1_a11 ER -
Polina A. Yurovskikh. Set membership estimation with a separate restriction on initial state and disturbances. Ural mathematical journal, Tome 7 (2021) no. 1, pp. 160-167. http://geodesic.mathdoc.fr/item/UMJ_2021_7_1_a11/