Some remarks on rough statistical $\Lambda$-convergence of order $\alpha$
Ural mathematical journal, Tome 7 (2021) no. 1, pp. 16-25
Voir la notice de l'article provenant de la source Math-Net.Ru
The main purpose of this work is to define Rough Statistical $\Lambda$-Convergence of order $\alpha$ $(0\alpha\leq1)$ in normed linear spaces. We have proved some basic properties and also provided some examples to show that this method of convergence is more generalized than the rough statistical convergence. Further, we have shown the results related to statistically $\Lambda$-bounded sets of order $\alpha$ and sets of rough statistically $\Lambda$-convergent sequences of order $\alpha$.
Keywords:
statistical convergence, rough statistical convergence, rough statistical limit points.
@article{UMJ_2021_7_1_a1,
author = {Reena Antal and Meenakshi Chawla and Vijay Kumar},
title = {Some remarks on rough statistical $\Lambda$-convergence of order $\alpha$},
journal = {Ural mathematical journal},
pages = {16--25},
publisher = {mathdoc},
volume = {7},
number = {1},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UMJ_2021_7_1_a1/}
}
TY - JOUR AU - Reena Antal AU - Meenakshi Chawla AU - Vijay Kumar TI - Some remarks on rough statistical $\Lambda$-convergence of order $\alpha$ JO - Ural mathematical journal PY - 2021 SP - 16 EP - 25 VL - 7 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UMJ_2021_7_1_a1/ LA - en ID - UMJ_2021_7_1_a1 ER -
Reena Antal; Meenakshi Chawla; Vijay Kumar. Some remarks on rough statistical $\Lambda$-convergence of order $\alpha$. Ural mathematical journal, Tome 7 (2021) no. 1, pp. 16-25. http://geodesic.mathdoc.fr/item/UMJ_2021_7_1_a1/