@article{UMJ_2021_7_1_a1,
author = {Reena Antal and Meenakshi Chawla and Vijay Kumar},
title = {Some remarks on rough statistical $\Lambda$-convergence of order $\alpha$},
journal = {Ural mathematical journal},
pages = {16--25},
year = {2021},
volume = {7},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UMJ_2021_7_1_a1/}
}
TY - JOUR AU - Reena Antal AU - Meenakshi Chawla AU - Vijay Kumar TI - Some remarks on rough statistical $\Lambda$-convergence of order $\alpha$ JO - Ural mathematical journal PY - 2021 SP - 16 EP - 25 VL - 7 IS - 1 UR - http://geodesic.mathdoc.fr/item/UMJ_2021_7_1_a1/ LA - en ID - UMJ_2021_7_1_a1 ER -
Reena Antal; Meenakshi Chawla; Vijay Kumar. Some remarks on rough statistical $\Lambda$-convergence of order $\alpha$. Ural mathematical journal, Tome 7 (2021) no. 1, pp. 16-25. http://geodesic.mathdoc.fr/item/UMJ_2021_7_1_a1/
[1] Alotaibi A., Mursaleen M., “A-statistical summability of Fourier Series and Walsh–Fourier series”, Appl. Math. Inf. Sci., 6:3 (2012), 535–538 | MR
[2] Aytar S., “Rough statistical convergence”, Numer. Funct. Anal. Optim., 29:3–4 (2008), 291–303 | DOI | MR | Zbl
[3] Chawla M., Saroa M. S., Kumar V., “On $\Lambda $-statistical convergence of order $\alpha $ in random 2-normed space”, Miskolc Math. Notes, 16:2 (2015), 1003–1015 | DOI | MR
[4] Çolak R., Bekta{ş} {Ç}. A., “$\lambda$-statistical convergence of order $\alpha$”, Acta Math. Sci. Ser. B Engl. Ed., 31:3 (2011), 953—959 | DOI | MR
[5] Fast H., “Sur la convergence statistique”, Colloq. Math., 2:3–4 (1951), 241–244 http://eudml.org/doc/209960 | DOI | MR | Zbl
[6] Fridy J. A., “Statistical limit points”, Proc. Amer. Math. Soc., 118:4 (1993), 1187–1192 | DOI | MR | Zbl
[7] Gadjiev A. D., Orhan C., “Some approximation theorems via statistical convergence”, Rocky Mountain J. Math., 32:1 (2002), 129–138 | DOI | MR | Zbl
[8] Karakus S., “Statistical convergence on probalistic normed spaces”, Math. Commun., 12:1 (2007), 11–23 | MR | Zbl
[9] Karakus S., Demirci K., Duman O., “Statistical convergence on intuitionistic fuzzy normed spaces”, Chaos Solitons Fractals, 35:4 (2008), 763–769 | DOI | MR | Zbl
[10] Maddox I. J., “Statistical convergence in locally convex space”, Math. Proc. Cambridge Philos. Soc., 104:1 (1988), 141–145 | DOI | MR | Zbl
[11] Maity M., A Note on Rough Statistical Convergence., 2016, 5 pp., arXiv: [math.FA] 1603.00180v1 | MR
[12] Maity M., A Note on Rough Statistical Convergence of Order $\alpha$, 2016, 7 pp., arXiv: [math.FA] 1603.00183v1 | MR
[13] Malik P., Maity M., “On rough convergence of double sequence in normed linear spaces”, Bull. Allahabad Math. Soc., 28:1 (2013), 89–99 | MR | Zbl
[14] Malik P., Maity M., “On rough statistical convergence of double sequences in normed linear spaces”, Afr. Mat., 27:1–2 (2016), 141—148 | DOI | MR | Zbl
[15] Malik P., Maity M., Ghosh A., Rough I-statistical Convergence of Sequences, 2016, 21 pp., arXiv: [math.FA] 1601.03978v3 | MR
[16] Miller H. I., “A measure theoretical subsequence characterization of statistical convergence”, Trans. Amer. Math. Soc., 347:5 (1995), 1811–1819 | DOI | MR | Zbl
[17] Mursaleen M., Noman A. K., “On the spaces of $\lambda$-convergent and bounded sequences”, Thai J. Math., 8:2 (2012), 311–329 | MR
[18] Pal S. K., Chandra D., Dutta S., “Rough ideal convergence”, Hacet. J. Math. Stat., 42:6 (2013), 633–640 | MR | Zbl
[19] Phu H. X., “Rough convergence in normed linear spaces”, Numer. Funct. Anal. Optim., 22:1–2 (2001), 199–222 | DOI | MR | Zbl
[20] Phu H. X., “Rough convergence in infinite dimensional normed spaces”, Numer. Func. Anal. Optim., 24:3–4 (2003), 285–301 | DOI | MR | Zbl