Some remarks on rough statistical $\Lambda$-convergence of order $\alpha$
Ural mathematical journal, Tome 7 (2021) no. 1, pp. 16-25 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The main purpose of this work is to define Rough Statistical $\Lambda$-Convergence of order $\alpha$ $(0\alpha\leq1)$ in normed linear spaces. We have proved some basic properties and also provided some examples to show that this method of convergence is more generalized than the rough statistical convergence. Further, we have shown the results related to statistically $\Lambda$-bounded sets of order $\alpha$ and sets of rough statistically $\Lambda$-convergent sequences of order $\alpha$.
Keywords: statistical convergence, rough statistical convergence, rough statistical limit points.
@article{UMJ_2021_7_1_a1,
     author = {Reena Antal and Meenakshi Chawla and Vijay Kumar},
     title = {Some remarks on rough statistical $\Lambda$-convergence of order $\alpha$},
     journal = {Ural mathematical journal},
     pages = {16--25},
     year = {2021},
     volume = {7},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2021_7_1_a1/}
}
TY  - JOUR
AU  - Reena Antal
AU  - Meenakshi Chawla
AU  - Vijay Kumar
TI  - Some remarks on rough statistical $\Lambda$-convergence of order $\alpha$
JO  - Ural mathematical journal
PY  - 2021
SP  - 16
EP  - 25
VL  - 7
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UMJ_2021_7_1_a1/
LA  - en
ID  - UMJ_2021_7_1_a1
ER  - 
%0 Journal Article
%A Reena Antal
%A Meenakshi Chawla
%A Vijay Kumar
%T Some remarks on rough statistical $\Lambda$-convergence of order $\alpha$
%J Ural mathematical journal
%D 2021
%P 16-25
%V 7
%N 1
%U http://geodesic.mathdoc.fr/item/UMJ_2021_7_1_a1/
%G en
%F UMJ_2021_7_1_a1
Reena Antal; Meenakshi Chawla; Vijay Kumar. Some remarks on rough statistical $\Lambda$-convergence of order $\alpha$. Ural mathematical journal, Tome 7 (2021) no. 1, pp. 16-25. http://geodesic.mathdoc.fr/item/UMJ_2021_7_1_a1/

[1] Alotaibi A., Mursaleen M., “A-statistical summability of Fourier Series and Walsh–Fourier series”, Appl. Math. Inf. Sci., 6:3 (2012), 535–538 | MR

[2] Aytar S., “Rough statistical convergence”, Numer. Funct. Anal. Optim., 29:3–4 (2008), 291–303 | DOI | MR | Zbl

[3] Chawla M., Saroa M. S., Kumar V., “On $\Lambda $-statistical convergence of order $\alpha $ in random 2-normed space”, Miskolc Math. Notes, 16:2 (2015), 1003–1015 | DOI | MR

[4] Çolak R., Bekta{ş} {Ç}. A., “$\lambda$-statistical convergence of order $\alpha$”, Acta Math. Sci. Ser. B Engl. Ed., 31:3 (2011), 953—959 | DOI | MR

[5] Fast H., “Sur la convergence statistique”, Colloq. Math., 2:3–4 (1951), 241–244 http://eudml.org/doc/209960 | DOI | MR | Zbl

[6] Fridy J. A., “Statistical limit points”, Proc. Amer. Math. Soc., 118:4 (1993), 1187–1192 | DOI | MR | Zbl

[7] Gadjiev A. D., Orhan C., “Some approximation theorems via statistical convergence”, Rocky Mountain J. Math., 32:1 (2002), 129–138 | DOI | MR | Zbl

[8] Karakus S., “Statistical convergence on probalistic normed spaces”, Math. Commun., 12:1 (2007), 11–23 | MR | Zbl

[9] Karakus S., Demirci K., Duman O., “Statistical convergence on intuitionistic fuzzy normed spaces”, Chaos Solitons Fractals, 35:4 (2008), 763–769 | DOI | MR | Zbl

[10] Maddox I. J., “Statistical convergence in locally convex space”, Math. Proc. Cambridge Philos. Soc., 104:1 (1988), 141–145 | DOI | MR | Zbl

[11] Maity M., A Note on Rough Statistical Convergence., 2016, 5 pp., arXiv: [math.FA] 1603.00180v1 | MR

[12] Maity M., A Note on Rough Statistical Convergence of Order $\alpha$, 2016, 7 pp., arXiv: [math.FA] 1603.00183v1 | MR

[13] Malik P., Maity M., “On rough convergence of double sequence in normed linear spaces”, Bull. Allahabad Math. Soc., 28:1 (2013), 89–99 | MR | Zbl

[14] Malik P., Maity M., “On rough statistical convergence of double sequences in normed linear spaces”, Afr. Mat., 27:1–2 (2016), 141—148 | DOI | MR | Zbl

[15] Malik P., Maity M., Ghosh A., Rough I-statistical Convergence of Sequences, 2016, 21 pp., arXiv: [math.FA] 1601.03978v3 | MR

[16] Miller H. I., “A measure theoretical subsequence characterization of statistical convergence”, Trans. Amer. Math. Soc., 347:5 (1995), 1811–1819 | DOI | MR | Zbl

[17] Mursaleen M., Noman A. K., “On the spaces of $\lambda$-convergent and bounded sequences”, Thai J. Math., 8:2 (2012), 311–329 | MR

[18] Pal S. K., Chandra D., Dutta S., “Rough ideal convergence”, Hacet. J. Math. Stat., 42:6 (2013), 633–640 | MR | Zbl

[19] Phu H. X., “Rough convergence in normed linear spaces”, Numer. Funct. Anal. Optim., 22:1–2 (2001), 199–222 | DOI | MR | Zbl

[20] Phu H. X., “Rough convergence in infinite dimensional normed spaces”, Numer. Func. Anal. Optim., 24:3–4 (2003), 285–301 | DOI | MR | Zbl