On the characterization of scaling functions on non-Archimedean fields
Ural mathematical journal, Tome 7 (2021) no. 1, pp. 3-15 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In real life application all signals are not obtained from uniform shifts; so there is a natural question regarding analysis and decompositions of these types of signals by a stable mathematical tool. This gap was filled by Gabardo and Nashed [11] by establishing a constructive algorithm based on the theory of spectral pairs for constructing non-uniform wavelet basis in $L^2(\mathbb R)$. In this setting, the associated translation set $\Lambda =\left\{ 0,r/N\right\}+2\,\mathbb Z$ is no longer a discrete subgroup of $\mathbb R$ but a spectrum associated with a certain one-dimensional spectral pair and the associated dilation is an even positive integer related to the given spectral pair. In this paper, we characterize the scaling function for non-uniform multiresolution analysis on local fields of positive characteristic (LFPC). Some properties of wavelet scaling function associated with non-uniform multiresolution analysis (NUMRA) on LFPC are also established.
Keywords: scaling function, local field, NUMRA.
Mots-clés : Fourier transform
@article{UMJ_2021_7_1_a0,
     author = {Ishtaq Ahmed and Owias Ahmad and Neya Ahmad Sheikh},
     title = {On the characterization of scaling functions on {non-Archimedean} fields},
     journal = {Ural mathematical journal},
     pages = {3--15},
     year = {2021},
     volume = {7},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2021_7_1_a0/}
}
TY  - JOUR
AU  - Ishtaq Ahmed
AU  - Owias Ahmad
AU  - Neya Ahmad Sheikh
TI  - On the characterization of scaling functions on non-Archimedean fields
JO  - Ural mathematical journal
PY  - 2021
SP  - 3
EP  - 15
VL  - 7
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UMJ_2021_7_1_a0/
LA  - en
ID  - UMJ_2021_7_1_a0
ER  - 
%0 Journal Article
%A Ishtaq Ahmed
%A Owias Ahmad
%A Neya Ahmad Sheikh
%T On the characterization of scaling functions on non-Archimedean fields
%J Ural mathematical journal
%D 2021
%P 3-15
%V 7
%N 1
%U http://geodesic.mathdoc.fr/item/UMJ_2021_7_1_a0/
%G en
%F UMJ_2021_7_1_a0
Ishtaq Ahmed; Owias Ahmad; Neya Ahmad Sheikh. On the characterization of scaling functions on non-Archimedean fields. Ural mathematical journal, Tome 7 (2021) no. 1, pp. 3-15. http://geodesic.mathdoc.fr/item/UMJ_2021_7_1_a0/

[1] Ahmad I., Sheikh N. A., “$a$-inner product on local fields of positive characteristic”, J. Nonlinear Anal. Appl., 2018:2 (2018), 64–75

[2] Ahmad I., Sheikh N. A., “Dual wavelet frames in Sobolev spaces on local fields of positive characteristic”, Filomat, 34:6 (2020), 2091–2099 | DOI | MR

[3] Ahmad O., Sheikh N. A., “Explicit construction of tight nonuniform framelet packets on local fields”, Oper. Matrices, 15:1 (2021), 131–149 | DOI | MR

[4] Ahmad O., Sheikh N. A., “On characterization of nonuniform tight wavelet frames on local fields”, Anal. Theory Appl., 34 (2018), 135–146 | DOI | MR | Zbl

[5] Albeverio S., Evdokimov S., Skopina M., “$p$-adic multiresolution analysis and wavelet frames”, J. Fourier Anal. Appl., 16 (2010), 693–714 | DOI | MR | Zbl

[6] Albeverio S., Kozyrev S., “Multidimensional basis of $p$-adic wavelets and representation theory”, $p$-Adic Num. Ultrametric Anal. Appl., 1:3 (2009), 181–189 | DOI | MR | Zbl

[7] Behera B., Jahan Q., “Multiresolution analysis on local fields and characterization of scaling functions”, Adv. Pure Appl. Math., 3:2 (2012), 181–202 | DOI | MR | Zbl

[8] Behera B., Jahan Q., “Characterization of wavelets and MRA wavelets on local fields of positive characteristic”, Collect. Math., 66:1 (2015), 33–53 | DOI | MR | Zbl

[9] Benedetto J. J., Benedetto R. L., “A wavelet theory for local fields and related groups”, J. Geom. Anal., 14:3 (2004), 423–456 | DOI | MR | Zbl

[10] Cifuentes P., Kazarian K. S., Antolín A. S., “Characterization of scaling functions in multiresolution analysis”, Proc. Am. Math. Soc., 133:4 (2005), 1013–1023 | DOI | MR | Zbl

[11] Gabardo J.-P., Nashed M.Z., “Nonuniform multiresolution analyses and spectral pairs”, J. Funct. Anal., 158:1 (1998), 209–241 | DOI | MR | Zbl

[12] Gabardo J.-P., Yu X., “Wavelets associated with nonuniform multiresolution analyses and one-dimensional spectral pairs”, J. Math. Anal. Appl., 323:2 (2006), 798–817 | DOI | MR | Zbl

[13] Jiang H., Li D., Jin N., “Multiresolution analysis on local fields”, J. Math. Anal. Appl. 2004, 294:2, 523–532 | DOI | MR | Zbl

[14] Khrennikov A. Yu., Kozyrev S. V., Wavelets on ultrametric spaces, 19 (2005), 61–76 | DOI | MR | Zbl

[15] Khrennikov A. Yu., Shelkovich V. M., “An infinite family of $p$-adic non-Haar wavelet bases and pseudo-differential operators”, $p$-Adic Num. Ultrametric Anal. Appl., 1 (2009), 204–216 | DOI | MR | Zbl

[16] Khrennikov A. Yu., Shelkovich V. M. Skopina M., “$p$-adic orthogonal wavelet bases”, $p$-Adic Num. Ultrametric Anal. Appl., 1:2 (2009), 145–156 | DOI | MR | Zbl

[17] Khrennikov A. Yu., Shelkovich V. M. Skopina M., “$p$-adic refinable functions and MRA-based wavelets”, J. Approx. Theory, 161:1 (2009), 226–238 | DOI | MR | Zbl

[18] Kozyrev S. V., “Wavelet theory as $p$-adic spectral analysis”, Izv. Math. 2002., 66:2, 149–158 | MR | Zbl

[19] Li D., Jiang H., “The necessary condition and sufficient conditions for wavelet frame on local fields”, J. Math. Anal. Appl., 345:1 (2008), 500–510 | DOI | MR | Zbl

[20] Madych W. R., “Some elementary properties of multiresolution analysis of $L^2(\mathbb R^n)$”, Wavelets: A Tutorial in Theory and Applications, v. 2, Wavelet Analysis and Its Applications., ed. Chui C. K., 1992, 259–294 | DOI | MR | Zbl

[21] Mallat S. G., “Multiresolution approximations and wavelet orthonormal bases of $L^2(\mathbb R)$”, Trans. Amer. Math. Soc., 315:1 (1989), 69–87 | MR | Zbl

[22] Shah F. A., Ahmad O., “Wave packet systems on local fields”, J. Geom. Phys., 120 (2017), 5–18 | DOI | MR | Zbl

[23] Shah F. A., Abdullah., “Nonuniform multiresolution analysis on local fields of positive characteristic”, Complex Anal. Oper. Theory, 9 (2015), 1589–1608 | DOI | MR | Zbl

[24] Shukla N. K., Maury S. C., Super-wavelets on local fields of positive characteristic, 291:4 (2018), 704–719 | DOI | MR | Zbl

[25] Taibleson M. H., Fourier Analysis on Local Fields. (MN-15)., Princeton University Press, Princeton, NJ, 1975, 306 pp. | MR

[26] Zhang Z., “Supports of Fourier transforms of scaling functions”, Appl. Comput. Harmon. Anal., 22:2 (2007), 141–156 | DOI | MR | Zbl