Mots-clés : Fourier transform
@article{UMJ_2021_7_1_a0,
author = {Ishtaq Ahmed and Owias Ahmad and Neya Ahmad Sheikh},
title = {On the characterization of scaling functions on {non-Archimedean} fields},
journal = {Ural mathematical journal},
pages = {3--15},
year = {2021},
volume = {7},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UMJ_2021_7_1_a0/}
}
TY - JOUR AU - Ishtaq Ahmed AU - Owias Ahmad AU - Neya Ahmad Sheikh TI - On the characterization of scaling functions on non-Archimedean fields JO - Ural mathematical journal PY - 2021 SP - 3 EP - 15 VL - 7 IS - 1 UR - http://geodesic.mathdoc.fr/item/UMJ_2021_7_1_a0/ LA - en ID - UMJ_2021_7_1_a0 ER -
Ishtaq Ahmed; Owias Ahmad; Neya Ahmad Sheikh. On the characterization of scaling functions on non-Archimedean fields. Ural mathematical journal, Tome 7 (2021) no. 1, pp. 3-15. http://geodesic.mathdoc.fr/item/UMJ_2021_7_1_a0/
[1] Ahmad I., Sheikh N. A., “$a$-inner product on local fields of positive characteristic”, J. Nonlinear Anal. Appl., 2018:2 (2018), 64–75
[2] Ahmad I., Sheikh N. A., “Dual wavelet frames in Sobolev spaces on local fields of positive characteristic”, Filomat, 34:6 (2020), 2091–2099 | DOI | MR
[3] Ahmad O., Sheikh N. A., “Explicit construction of tight nonuniform framelet packets on local fields”, Oper. Matrices, 15:1 (2021), 131–149 | DOI | MR
[4] Ahmad O., Sheikh N. A., “On characterization of nonuniform tight wavelet frames on local fields”, Anal. Theory Appl., 34 (2018), 135–146 | DOI | MR | Zbl
[5] Albeverio S., Evdokimov S., Skopina M., “$p$-adic multiresolution analysis and wavelet frames”, J. Fourier Anal. Appl., 16 (2010), 693–714 | DOI | MR | Zbl
[6] Albeverio S., Kozyrev S., “Multidimensional basis of $p$-adic wavelets and representation theory”, $p$-Adic Num. Ultrametric Anal. Appl., 1:3 (2009), 181–189 | DOI | MR | Zbl
[7] Behera B., Jahan Q., “Multiresolution analysis on local fields and characterization of scaling functions”, Adv. Pure Appl. Math., 3:2 (2012), 181–202 | DOI | MR | Zbl
[8] Behera B., Jahan Q., “Characterization of wavelets and MRA wavelets on local fields of positive characteristic”, Collect. Math., 66:1 (2015), 33–53 | DOI | MR | Zbl
[9] Benedetto J. J., Benedetto R. L., “A wavelet theory for local fields and related groups”, J. Geom. Anal., 14:3 (2004), 423–456 | DOI | MR | Zbl
[10] Cifuentes P., Kazarian K. S., Antolín A. S., “Characterization of scaling functions in multiresolution analysis”, Proc. Am. Math. Soc., 133:4 (2005), 1013–1023 | DOI | MR | Zbl
[11] Gabardo J.-P., Nashed M.Z., “Nonuniform multiresolution analyses and spectral pairs”, J. Funct. Anal., 158:1 (1998), 209–241 | DOI | MR | Zbl
[12] Gabardo J.-P., Yu X., “Wavelets associated with nonuniform multiresolution analyses and one-dimensional spectral pairs”, J. Math. Anal. Appl., 323:2 (2006), 798–817 | DOI | MR | Zbl
[13] Jiang H., Li D., Jin N., “Multiresolution analysis on local fields”, J. Math. Anal. Appl. 2004, 294:2, 523–532 | DOI | MR | Zbl
[14] Khrennikov A. Yu., Kozyrev S. V., Wavelets on ultrametric spaces, 19 (2005), 61–76 | DOI | MR | Zbl
[15] Khrennikov A. Yu., Shelkovich V. M., “An infinite family of $p$-adic non-Haar wavelet bases and pseudo-differential operators”, $p$-Adic Num. Ultrametric Anal. Appl., 1 (2009), 204–216 | DOI | MR | Zbl
[16] Khrennikov A. Yu., Shelkovich V. M. Skopina M., “$p$-adic orthogonal wavelet bases”, $p$-Adic Num. Ultrametric Anal. Appl., 1:2 (2009), 145–156 | DOI | MR | Zbl
[17] Khrennikov A. Yu., Shelkovich V. M. Skopina M., “$p$-adic refinable functions and MRA-based wavelets”, J. Approx. Theory, 161:1 (2009), 226–238 | DOI | MR | Zbl
[18] Kozyrev S. V., “Wavelet theory as $p$-adic spectral analysis”, Izv. Math. 2002., 66:2, 149–158 | MR | Zbl
[19] Li D., Jiang H., “The necessary condition and sufficient conditions for wavelet frame on local fields”, J. Math. Anal. Appl., 345:1 (2008), 500–510 | DOI | MR | Zbl
[20] Madych W. R., “Some elementary properties of multiresolution analysis of $L^2(\mathbb R^n)$”, Wavelets: A Tutorial in Theory and Applications, v. 2, Wavelet Analysis and Its Applications., ed. Chui C. K., 1992, 259–294 | DOI | MR | Zbl
[21] Mallat S. G., “Multiresolution approximations and wavelet orthonormal bases of $L^2(\mathbb R)$”, Trans. Amer. Math. Soc., 315:1 (1989), 69–87 | MR | Zbl
[22] Shah F. A., Ahmad O., “Wave packet systems on local fields”, J. Geom. Phys., 120 (2017), 5–18 | DOI | MR | Zbl
[23] Shah F. A., Abdullah., “Nonuniform multiresolution analysis on local fields of positive characteristic”, Complex Anal. Oper. Theory, 9 (2015), 1589–1608 | DOI | MR | Zbl
[24] Shukla N. K., Maury S. C., Super-wavelets on local fields of positive characteristic, 291:4 (2018), 704–719 | DOI | MR | Zbl
[25] Taibleson M. H., Fourier Analysis on Local Fields. (MN-15)., Princeton University Press, Princeton, NJ, 1975, 306 pp. | MR
[26] Zhang Z., “Supports of Fourier transforms of scaling functions”, Appl. Comput. Harmon. Anal., 22:2 (2007), 141–156 | DOI | MR | Zbl