Inequalities for algebraic polynomials on an ellipse
Ural mathematical journal, Tome 6 (2020) no. 2, pp. 87-94 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper presents new solutions to two classical problems of approximation theory. The first problem is to find the polynomial that deviates least from zero on an ellipse. The second one is to find the exact upper bound of the uniform norm on an ellipse with foci $\pm 1$ of the derivative of an algebraic polynomial with real coefficients normalized on the segment $[- 1,1]$.
Keywords: Chebyshev polynomials, ellipse, derivative of a polynomial, uniform norm.
Mots-clés : polynomial, segment
@article{UMJ_2020_6_2_a8,
     author = {Tatiana M. Nikiforova},
     title = {Inequalities for algebraic polynomials on an ellipse},
     journal = {Ural mathematical journal},
     pages = {87--94},
     year = {2020},
     volume = {6},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2020_6_2_a8/}
}
TY  - JOUR
AU  - Tatiana M. Nikiforova
TI  - Inequalities for algebraic polynomials on an ellipse
JO  - Ural mathematical journal
PY  - 2020
SP  - 87
EP  - 94
VL  - 6
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UMJ_2020_6_2_a8/
LA  - en
ID  - UMJ_2020_6_2_a8
ER  - 
%0 Journal Article
%A Tatiana M. Nikiforova
%T Inequalities for algebraic polynomials on an ellipse
%J Ural mathematical journal
%D 2020
%P 87-94
%V 6
%N 2
%U http://geodesic.mathdoc.fr/item/UMJ_2020_6_2_a8/
%G en
%F UMJ_2020_6_2_a8
Tatiana M. Nikiforova. Inequalities for algebraic polynomials on an ellipse. Ural mathematical journal, Tome 6 (2020) no. 2, pp. 87-94. http://geodesic.mathdoc.fr/item/UMJ_2020_6_2_a8/

[1] Smirnov V. I., Lebedev N. A., Konstruktivnaya teoriya funkcij kompleksnogo peremennogo [The Constructive Theory of Functions of a Complex Variable], Nauka Publ., Leningrad, 1964, 438 pp. (in Russian)

[2] Kolmogorov A. N., “A remark on the polynomials of P.L. Chebyshev deviating the least from a given function”, Uspehi Mat. Nauk, 3:1 (1948), 216–221 (in Russian) | MR | Zbl

[3] Kemperman J. H. B., “Markov type inequalities for the derivatives of a polynomial”, Aspects of Mathematics and its Applications, 34 (1986), 465–476 | DOI | MR

[4] Duffin R., Schaeffer A. C., “Some properties of functions of exponential type”, Bull. Amer. Math. Soc., 4:4 (1938), 236–240 | DOI | MR

[5] Erdös, “Some remark on polynomials”, Bull. Amer. Math. Soc., 53:12 (1947), 1169–1176 | DOI | MR | Zbl

[6] Abramowitz M., Stegun I. A., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, NY, 1965, 1046 pp. | DOI | MR

[7] Bernstein S. N., “O nailuchshem priblizhenii nepreryvnykh funktsii posredstvom mnogochlenov dannoi stepeni [On the Best Approximation of Continuous Functions by Polynomials of a Given Degree]”, Comm. Soc. Math. Kharkov. 2 Series, XIII (13):2–5 (1912), 49–194 (in Russian) | Zbl

[8] Dzyadyk V. K., Vvedenie v teoriyu ravnomernogo priblizheniya funkcij polinomami [Introduction to the Theory of Uniform Approximation of Functions by Polynomials], Nauka, Moscow, 1977, 508 pp. (in Russian) | MR

[9] Markov A. A., “Ob odnom voproce D.I. Mendeleeva [On a Question by D.I. Mendeleev]”, Zap. Imp. Akad. Nauk., St. Petersburg, 62 (1890), 1–24 (in Russian)

[10] Schaeffer A. C., Szegö G., “Inequalities for harmonic polynomials in two and three dimensions”, Trans. Amer. Math. Soc., 50 (1941), 187–225 | DOI | MR