Mots-clés : polynomial, segment
@article{UMJ_2020_6_2_a8,
author = {Tatiana M. Nikiforova},
title = {Inequalities for algebraic polynomials on an ellipse},
journal = {Ural mathematical journal},
pages = {87--94},
year = {2020},
volume = {6},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UMJ_2020_6_2_a8/}
}
Tatiana M. Nikiforova. Inequalities for algebraic polynomials on an ellipse. Ural mathematical journal, Tome 6 (2020) no. 2, pp. 87-94. http://geodesic.mathdoc.fr/item/UMJ_2020_6_2_a8/
[1] Smirnov V. I., Lebedev N. A., Konstruktivnaya teoriya funkcij kompleksnogo peremennogo [The Constructive Theory of Functions of a Complex Variable], Nauka Publ., Leningrad, 1964, 438 pp. (in Russian)
[2] Kolmogorov A. N., “A remark on the polynomials of P.L. Chebyshev deviating the least from a given function”, Uspehi Mat. Nauk, 3:1 (1948), 216–221 (in Russian) | MR | Zbl
[3] Kemperman J. H. B., “Markov type inequalities for the derivatives of a polynomial”, Aspects of Mathematics and its Applications, 34 (1986), 465–476 | DOI | MR
[4] Duffin R., Schaeffer A. C., “Some properties of functions of exponential type”, Bull. Amer. Math. Soc., 4:4 (1938), 236–240 | DOI | MR
[5] Erdös, “Some remark on polynomials”, Bull. Amer. Math. Soc., 53:12 (1947), 1169–1176 | DOI | MR | Zbl
[6] Abramowitz M., Stegun I. A., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, NY, 1965, 1046 pp. | DOI | MR
[7] Bernstein S. N., “O nailuchshem priblizhenii nepreryvnykh funktsii posredstvom mnogochlenov dannoi stepeni [On the Best Approximation of Continuous Functions by Polynomials of a Given Degree]”, Comm. Soc. Math. Kharkov. 2 Series, XIII (13):2–5 (1912), 49–194 (in Russian) | Zbl
[8] Dzyadyk V. K., Vvedenie v teoriyu ravnomernogo priblizheniya funkcij polinomami [Introduction to the Theory of Uniform Approximation of Functions by Polynomials], Nauka, Moscow, 1977, 508 pp. (in Russian) | MR
[9] Markov A. A., “Ob odnom voproce D.I. Mendeleeva [On a Question by D.I. Mendeleev]”, Zap. Imp. Akad. Nauk., St. Petersburg, 62 (1890), 1–24 (in Russian)
[10] Schaeffer A. C., Szegö G., “Inequalities for harmonic polynomials in two and three dimensions”, Trans. Amer. Math. Soc., 50 (1941), 187–225 | DOI | MR