Positional impulse and discontinuous controls for differential inclusion
Ural mathematical journal, Tome 6 (2020) no. 2, pp. 68-75 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Nonlinear control systems presented in the form of differential inclusions with impulse or discontinuous positional controls are investigated. The formalization of the impulse-sliding regime is carried out. In terms of the jump function of the impulse control, the differential inclusion is written for the ideal impulse-sliding regime. The method of equivalent control for differential inclusion with discontinuous positional controls is used to solve the question of the existence of a discontinuous system for which the ideal impulse-sliding regime is the usual sliding regime. The possibility of the combined use of the impulse-sliding and sliding regimes as control actions in those situations when there are not enough control resources for the latter is discussed.
Keywords: impulse position control, discontinuous position control, differential inclusion, impulse-sliding regime, sliding regime.
@article{UMJ_2020_6_2_a6,
     author = {Ivan A. Finogenko and Alexander N. Sesekin},
     title = {Positional impulse and discontinuous controls for differential inclusion},
     journal = {Ural mathematical journal},
     pages = {68--75},
     year = {2020},
     volume = {6},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2020_6_2_a6/}
}
TY  - JOUR
AU  - Ivan A. Finogenko
AU  - Alexander N. Sesekin
TI  - Positional impulse and discontinuous controls for differential inclusion
JO  - Ural mathematical journal
PY  - 2020
SP  - 68
EP  - 75
VL  - 6
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UMJ_2020_6_2_a6/
LA  - en
ID  - UMJ_2020_6_2_a6
ER  - 
%0 Journal Article
%A Ivan A. Finogenko
%A Alexander N. Sesekin
%T Positional impulse and discontinuous controls for differential inclusion
%J Ural mathematical journal
%D 2020
%P 68-75
%V 6
%N 2
%U http://geodesic.mathdoc.fr/item/UMJ_2020_6_2_a6/
%G en
%F UMJ_2020_6_2_a6
Ivan A. Finogenko; Alexander N. Sesekin. Positional impulse and discontinuous controls for differential inclusion. Ural mathematical journal, Tome 6 (2020) no. 2, pp. 68-75. http://geodesic.mathdoc.fr/item/UMJ_2020_6_2_a6/

[1] Borisovich Y. G., Gel'man B. D., Myshkis A. D., Obukhovskii V. V., Vvedenie v teoriyu mnogoznachnyh otobrazhenij i differencial'nyh vklyuchenij [Introduction to the Theory of Set-Valued Mappings and Differential Inclusions], KomKniga, Moscow, 2005, 214 pp. (in Russian)

[2] Filippov A. F., Differential Equations with Discontinuous Righthand Sides, v. 18, Math. Appl. Ser.,, Springer Science+Business Media, Netherlands, 1988, 304 pp. | DOI | MR

[3] Filippova T. F., “Set-valued solutions to impulsive differential inclusions”, Math. Comput. Model. Dyn. Syst., 11:2 (2005), 149–158 | DOI | MR | Zbl

[4] Finogenko I. A., Ponomarev D. V., “On differential inclusions with positional discontinuous and pulse controls”, Trudy Inst. Mat. i Mekh. UrO RAN, 19:1 (2013), 284–299 (in Russian) | MR

[5] Finogenko I. A., Sesekin A. N., “Impulse position control for differential inclusions”, AIP Conf. Proc. 2018, 2048:1, 020008 | DOI | MR

[6] Utkin V. I., Skol'zyashchie rezhimy i ih primeneniya v sistemah s peremennoj strukturoj [Sliding Modes and their Applications in Variable Structure Systems], Nauka, Moscow, 1974, 272 pp. (in Russian) | MR

[7] Utkin V. I., Sliding Modes in Control and Optimization., Comm. Control Engrg. Ser., Springer-Verlag, Berlin, Heidelberg, 1992, 286 pp. | DOI | MR | Zbl

[8] Zavalishchin S. T., Sesekin A. N., “Impulse-sliding regimes of non-linear dynamic systems”, Differ. Equ., 19:5 (1983), 562–571 | MR | Zbl

[9] Zavalishchin S. T., Sesekin A. N., Dynamic Impulse Systems: Theory and Applications, v. 394, Math. Appl. Ser., Springer Science+Business Media, Dordrecht, 1997, 260 pp. | DOI | MR