Distance-regular graph with intersection array $\{27, 20, 7; 1, 4, 21\}$ does not exist
Ural mathematical journal, Tome 6 (2020) no. 2, pp. 63-67 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the class of distance-regular graphs of diameter $3$ there are $5$ intersection arrays of graphs with at most $28$ vertices and noninteger eigenvalue. These arrays are $\{18, 14, 5; 1, 2, 144\}$, $\{18, 15, 9; 1, 1, 10\}$, $\{21, 16, 10; 1, 2, 12\}$, $\{24, 21, 3; 1, 3, 18\}$, and $\{27, 20, 7; 1, 4, 21\}$. Automorphisms of graphs with intersection arrays $\{18, 15, 9; 1, 1, 10\}$ and $\{24, 21, 3; 1, 3, 18\}$ were found earlier by A. A. Makhnev and D. V. Paduchikh. In this paper, it is proved that a graph with the intersection array $\{27, 20, 7; 1, 4, 21\}$ does not exist.
Keywords: distance-regular graph, graph $\Gamma$, with strongly regular graph $\Gamma_3$
Mots-clés : automorphism.
@article{UMJ_2020_6_2_a5,
     author = {Konstantin S. Efimov and Alexander A. Makhnev},
     title = {Distance-regular graph with intersection array $\{27, 20, 7; 1, 4, 21\}$ does not exist},
     journal = {Ural mathematical journal},
     pages = {63--67},
     year = {2020},
     volume = {6},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2020_6_2_a5/}
}
TY  - JOUR
AU  - Konstantin S. Efimov
AU  - Alexander A. Makhnev
TI  - Distance-regular graph with intersection array $\{27, 20, 7; 1, 4, 21\}$ does not exist
JO  - Ural mathematical journal
PY  - 2020
SP  - 63
EP  - 67
VL  - 6
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UMJ_2020_6_2_a5/
LA  - en
ID  - UMJ_2020_6_2_a5
ER  - 
%0 Journal Article
%A Konstantin S. Efimov
%A Alexander A. Makhnev
%T Distance-regular graph with intersection array $\{27, 20, 7; 1, 4, 21\}$ does not exist
%J Ural mathematical journal
%D 2020
%P 63-67
%V 6
%N 2
%U http://geodesic.mathdoc.fr/item/UMJ_2020_6_2_a5/
%G en
%F UMJ_2020_6_2_a5
Konstantin S. Efimov; Alexander A. Makhnev. Distance-regular graph with intersection array $\{27, 20, 7; 1, 4, 21\}$ does not exist. Ural mathematical journal, Tome 6 (2020) no. 2, pp. 63-67. http://geodesic.mathdoc.fr/item/UMJ_2020_6_2_a5/

[1] Brouwer A. E., Cohen A. M., Neumaier A., Distance-Regular Graphs, Springer-Verlag, Berlin, Heidelberg, 1989, 495 pp. | DOI | MR | Zbl

[2] Jurišić A., Vidali J., “Extremal 1-codes in distance-regular graphs of diameter 3”, Des. Codes Cryptogr., 65 (2012), 29–47 | DOI | MR | Zbl

[3] Makhnev A. A., Nirova M. S., “Distance-regular Shilla graphs with $b_2=c_2$”, Math. Notes, 103:5–6 (2018), 780–792 | DOI | MR | Zbl

[4] Makhnev A. A., Paduchikh D. V., “An automorphism group of a distance-regular graph with intersection array $\{24,21,3;1,3,18\}$”, Algebra Logic, 51:4 (2012), 319–332 | DOI | MR | Zbl

[5] Makhnev A. A., Paduchikh D. V., “On automorphisms of distance-regular graph with intersection array $\{18,15,9;1,1,10\}$”, Commun. Math. Stat., 3:4 (2015), 527–534 | DOI | MR | Zbl