Distance-regular graph with intersection array $\{27, 20, 7; 1, 4, 21\}$ does not exist
Ural mathematical journal, Tome 6 (2020) no. 2, pp. 63-67
Voir la notice de l'article provenant de la source Math-Net.Ru
In the class of distance-regular graphs of diameter $3$ there are $5$ intersection arrays of graphs with at most $28$ vertices and noninteger eigenvalue. These arrays are $\{18, 14, 5; 1, 2, 144\}$, $\{18, 15, 9; 1, 1, 10\}$, $\{21, 16, 10; 1, 2, 12\}$, $\{24, 21, 3; 1, 3, 18\}$, and $\{27, 20, 7; 1, 4, 21\}$. Automorphisms of graphs with intersection arrays $\{18, 15, 9; 1, 1, 10\}$ and $\{24, 21, 3; 1, 3, 18\}$ were found earlier by A. A. Makhnev and D. V. Paduchikh. In this paper, it is proved that a graph with the intersection array $\{27, 20, 7; 1, 4, 21\}$ does not exist.
Keywords:
distance-regular graph, graph $\Gamma$, with strongly regular graph $\Gamma_3$
Mots-clés : automorphism.
Mots-clés : automorphism.
@article{UMJ_2020_6_2_a5,
author = {Konstantin S. Efimov and Alexander A. Makhnev},
title = {Distance-regular graph with intersection array $\{27, 20, 7; 1, 4, 21\}$ does not exist},
journal = {Ural mathematical journal},
pages = {63--67},
publisher = {mathdoc},
volume = {6},
number = {2},
year = {2020},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UMJ_2020_6_2_a5/}
}
TY - JOUR
AU - Konstantin S. Efimov
AU - Alexander A. Makhnev
TI - Distance-regular graph with intersection array $\{27, 20, 7; 1, 4, 21\}$ does not exist
JO - Ural mathematical journal
PY - 2020
SP - 63
EP - 67
VL - 6
IS - 2
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/UMJ_2020_6_2_a5/
LA - en
ID - UMJ_2020_6_2_a5
ER -
%0 Journal Article
%A Konstantin S. Efimov
%A Alexander A. Makhnev
%T Distance-regular graph with intersection array $\{27, 20, 7; 1, 4, 21\}$ does not exist
%J Ural mathematical journal
%D 2020
%P 63-67
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UMJ_2020_6_2_a5/
%G en
%F UMJ_2020_6_2_a5
Konstantin S. Efimov; Alexander A. Makhnev. Distance-regular graph with intersection array $\{27, 20, 7; 1, 4, 21\}$ does not exist. Ural mathematical journal, Tome 6 (2020) no. 2, pp. 63-67. http://geodesic.mathdoc.fr/item/UMJ_2020_6_2_a5/