Mots-clés : automorphism.
@article{UMJ_2020_6_2_a5,
author = {Konstantin S. Efimov and Alexander A. Makhnev},
title = {Distance-regular graph with intersection array $\{27, 20, 7; 1, 4, 21\}$ does not exist},
journal = {Ural mathematical journal},
pages = {63--67},
year = {2020},
volume = {6},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UMJ_2020_6_2_a5/}
}
TY - JOUR
AU - Konstantin S. Efimov
AU - Alexander A. Makhnev
TI - Distance-regular graph with intersection array $\{27, 20, 7; 1, 4, 21\}$ does not exist
JO - Ural mathematical journal
PY - 2020
SP - 63
EP - 67
VL - 6
IS - 2
UR - http://geodesic.mathdoc.fr/item/UMJ_2020_6_2_a5/
LA - en
ID - UMJ_2020_6_2_a5
ER -
Konstantin S. Efimov; Alexander A. Makhnev. Distance-regular graph with intersection array $\{27, 20, 7; 1, 4, 21\}$ does not exist. Ural mathematical journal, Tome 6 (2020) no. 2, pp. 63-67. http://geodesic.mathdoc.fr/item/UMJ_2020_6_2_a5/
[1] Brouwer A. E., Cohen A. M., Neumaier A., Distance-Regular Graphs, Springer-Verlag, Berlin, Heidelberg, 1989, 495 pp. | DOI | MR | Zbl
[2] Jurišić A., Vidali J., “Extremal 1-codes in distance-regular graphs of diameter 3”, Des. Codes Cryptogr., 65 (2012), 29–47 | DOI | MR | Zbl
[3] Makhnev A. A., Nirova M. S., “Distance-regular Shilla graphs with $b_2=c_2$”, Math. Notes, 103:5–6 (2018), 780–792 | DOI | MR | Zbl
[4] Makhnev A. A., Paduchikh D. V., “An automorphism group of a distance-regular graph with intersection array $\{24,21,3;1,3,18\}$”, Algebra Logic, 51:4 (2012), 319–332 | DOI | MR | Zbl
[5] Makhnev A. A., Paduchikh D. V., “On automorphisms of distance-regular graph with intersection array $\{18,15,9;1,1,10\}$”, Commun. Math. Stat., 3:4 (2015), 527–534 | DOI | MR | Zbl