Open packing number for some classes of perfect graphs
Ural mathematical journal, Tome 6 (2020) no. 2, pp. 38-43

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a graph with the vertex set $V(G)$. A subset $S$ of $V(G)$ is an open packing set of $G$ if every pair of vertices in $S$ has no common neighbor in $G.$ The maximum cardinality of an open packing set of $G$ is the open packing number of $G$ and it is denoted by $\rho^o(G)$. In this paper, the exact values of the open packing numbers for some classes of perfect graphs, such as split graphs, $\{P_4, C_4\}$-free graphs, the complement of a bipartite graph, the trestled graph of a perfect graph are obtained.
Keywords: open packing number, 2-packing number, perfect graphs, trestled graphs.
@article{UMJ_2020_6_2_a3,
     author = {K. Raja Chandrasekar and S. Saravanakumar},
     title = {Open packing number for some classes of perfect graphs},
     journal = {Ural mathematical journal},
     pages = {38--43},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2020_6_2_a3/}
}
TY  - JOUR
AU  - K. Raja Chandrasekar
AU  - S. Saravanakumar
TI  - Open packing number for some classes of perfect graphs
JO  - Ural mathematical journal
PY  - 2020
SP  - 38
EP  - 43
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UMJ_2020_6_2_a3/
LA  - en
ID  - UMJ_2020_6_2_a3
ER  - 
%0 Journal Article
%A K. Raja Chandrasekar
%A S. Saravanakumar
%T Open packing number for some classes of perfect graphs
%J Ural mathematical journal
%D 2020
%P 38-43
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UMJ_2020_6_2_a3/
%G en
%F UMJ_2020_6_2_a3
K. Raja Chandrasekar; S. Saravanakumar. Open packing number for some classes of perfect graphs. Ural mathematical journal, Tome 6 (2020) no. 2, pp. 38-43. http://geodesic.mathdoc.fr/item/UMJ_2020_6_2_a3/