Generalized order $(\alpha ,\beta)$ oriented some growth properties of composite entire functions
Ural mathematical journal, Tome 6 (2020) no. 2, pp. 25-37
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we establish some results relating to the growths of composition of two entire functions with their corresponding left and right
factors on the basis of their generalized order $(\alpha ,\beta )$ and generalized lower order $(\alpha ,\beta )$ where $\alpha $ and $\beta $ are continuous non-negative functions on $(-\infty ,+\infty )$.
Keywords:
entire function, growth, generalized order $(\alpha,\beta )$, generalized lower order $(\alpha,\beta )$.
Mots-clés : composition
Mots-clés : composition
@article{UMJ_2020_6_2_a2,
author = {Tanmay Biswas and Chinmay Biswas},
title = {Generalized order $(\alpha ,\beta)$ oriented some growth properties of composite entire functions},
journal = {Ural mathematical journal},
pages = {25--37},
publisher = {mathdoc},
volume = {6},
number = {2},
year = {2020},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UMJ_2020_6_2_a2/}
}
TY - JOUR AU - Tanmay Biswas AU - Chinmay Biswas TI - Generalized order $(\alpha ,\beta)$ oriented some growth properties of composite entire functions JO - Ural mathematical journal PY - 2020 SP - 25 EP - 37 VL - 6 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UMJ_2020_6_2_a2/ LA - en ID - UMJ_2020_6_2_a2 ER -
Tanmay Biswas; Chinmay Biswas. Generalized order $(\alpha ,\beta)$ oriented some growth properties of composite entire functions. Ural mathematical journal, Tome 6 (2020) no. 2, pp. 25-37. http://geodesic.mathdoc.fr/item/UMJ_2020_6_2_a2/