The variety generated by an ai-semiring of order three
Ural mathematical journal, Tome 6 (2020) no. 2, pp. 117-132
Voir la notice de l'article provenant de la source Math-Net.Ru
Up to isomorphism, there are 61 ai-semirings of order three. The finite basis problem for these semirings is investigated.
This problem for 45 semirings of them is answered by some results in the literature. The remaining semirings are studied using equational logic. It is shown that with the possible exception of the semiring $S_7$, all ai-semirings of order three are finitely based.
Keywords:
ai-semiring, identity, finitely based variety.
@article{UMJ_2020_6_2_a11,
author = {Xianzhong Zhao and Miaomiao Ren and Sini\v{s}a Crvenkovi\'c and Yong Shao and Petar Dapi\'c},
title = {The variety generated by an ai-semiring of order three},
journal = {Ural mathematical journal},
pages = {117--132},
publisher = {mathdoc},
volume = {6},
number = {2},
year = {2020},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UMJ_2020_6_2_a11/}
}
TY - JOUR AU - Xianzhong Zhao AU - Miaomiao Ren AU - Siniša Crvenković AU - Yong Shao AU - Petar Dapić TI - The variety generated by an ai-semiring of order three JO - Ural mathematical journal PY - 2020 SP - 117 EP - 132 VL - 6 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UMJ_2020_6_2_a11/ LA - en ID - UMJ_2020_6_2_a11 ER -
%0 Journal Article %A Xianzhong Zhao %A Miaomiao Ren %A Siniša Crvenković %A Yong Shao %A Petar Dapić %T The variety generated by an ai-semiring of order three %J Ural mathematical journal %D 2020 %P 117-132 %V 6 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/UMJ_2020_6_2_a11/ %G en %F UMJ_2020_6_2_a11
Xianzhong Zhao; Miaomiao Ren; Siniša Crvenković; Yong Shao; Petar Dapić. The variety generated by an ai-semiring of order three. Ural mathematical journal, Tome 6 (2020) no. 2, pp. 117-132. http://geodesic.mathdoc.fr/item/UMJ_2020_6_2_a11/