The variety generated by an ai-semiring of order three
Ural mathematical journal, Tome 6 (2020) no. 2, pp. 117-132 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Up to isomorphism, there are 61 ai-semirings of order three. The finite basis problem for these semirings is investigated. This problem for 45 semirings of them is answered by some results in the literature. The remaining semirings are studied using equational logic. It is shown that with the possible exception of the semiring $S_7$, all ai-semirings of order three are finitely based.
Keywords: ai-semiring, identity, finitely based variety.
@article{UMJ_2020_6_2_a11,
     author = {Xianzhong Zhao and Miaomiao Ren and Sini\v{s}a Crvenkovi\'c and Yong Shao and Petar Dapi\'c},
     title = {The variety generated by an ai-semiring of order three},
     journal = {Ural mathematical journal},
     pages = {117--132},
     year = {2020},
     volume = {6},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2020_6_2_a11/}
}
TY  - JOUR
AU  - Xianzhong Zhao
AU  - Miaomiao Ren
AU  - Siniša Crvenković
AU  - Yong Shao
AU  - Petar Dapić
TI  - The variety generated by an ai-semiring of order three
JO  - Ural mathematical journal
PY  - 2020
SP  - 117
EP  - 132
VL  - 6
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UMJ_2020_6_2_a11/
LA  - en
ID  - UMJ_2020_6_2_a11
ER  - 
%0 Journal Article
%A Xianzhong Zhao
%A Miaomiao Ren
%A Siniša Crvenković
%A Yong Shao
%A Petar Dapić
%T The variety generated by an ai-semiring of order three
%J Ural mathematical journal
%D 2020
%P 117-132
%V 6
%N 2
%U http://geodesic.mathdoc.fr/item/UMJ_2020_6_2_a11/
%G en
%F UMJ_2020_6_2_a11
Xianzhong Zhao; Miaomiao Ren; Siniša Crvenković; Yong Shao; Petar Dapić. The variety generated by an ai-semiring of order three. Ural mathematical journal, Tome 6 (2020) no. 2, pp. 117-132. http://geodesic.mathdoc.fr/item/UMJ_2020_6_2_a11/

[1] Dolinka I., “A nonfintely based finite semiring”, Int. J. Algebra Comput., 17:8 (2007), 1537–1551 | DOI | MR | Zbl

[2] Dolinka I., “A class of inherently nonfinitely based semirings”, Algebra Universalis, 60:1 (2009), 19–35 | DOI | MR | Zbl

[3] Dolinka I., “The finite basis problem for endomorphism semirings of finite semilattices with zero”, Algebra Universalis, 61:3–4 (2009), 441–448 | DOI | MR | Zbl

[4] Dolinka I., “A remark on nonfinitely based semirings”, Semigroup Forum, 78:2 (2009), 368–373 | DOI | MR | Zbl

[5] Ghosh S., Pastijn F., Zhao X. Z., “Varieties generated by ordered bands I”, Order, 22:2 (2005), 109–128 | DOI | MR | Zbl

[6] Kruse R. L., “Identities satisfied by a finite ring”, J. Algebra, 26:2 (1973), 298–318 | DOI | MR | Zbl

[7] Kuřil M., Polák L., “On varieties of semilattice-ordered semigroups”, Semigroup Forum, 71:1 (2005), 27–48 | DOI | MR | Zbl

[8] L'vov I. V., “Varieties of associative rings. I”, Algebra and Logic, 12:3 (1973), 150–167 | DOI | MR

[9] Lyndon R. C., “Identities in two-valued calculi.”, Trans. Amer. Math. Soc., 71:3 (1951), 457–457 | DOI | MR | Zbl

[10] Lyndon R. C., “Identities in finite algebras”, Proc. Amer. Math. Soc., 5 (1954), 8–9 | DOI | MR | Zbl

[11] McKenzie R., “Equational bases for lattice theories”, Math. Scand., 27 (1970), 24–38 | DOI | MR | Zbl

[12] {McKenzie R.} Tarski's finite basis problem is undecidable, Int. J. Algebra Comput., 6:1 (1996), 49–104 | DOI | MR | Zbl

[13] McKenzie R. C., Romanowska A., “Varieties of $\cdot$-distributive bisemilattices”, Contrib. Gen. Algebra, 1 (1979), 213–218 | MR

[14] McNulty G. F., Willard R., The Chautauqua Problem, Tarski's Finite Basis Problem, and Residual Bounds for 3-element Algebras (to appear)

[15] Oates S., Powell M. B., “Identical relations in finite groups”, J. Algebra, 1:1 (1964), 11–39 | DOI | MR | Zbl

[16] Pastijn F., “Varieties generated by ordered bands II”, Order, 22:2 (2005), 129–143 | DOI | MR | Zbl

[17] Pastijn F., Zhao X. Z., “Varieties of idempotent semirings with commutative addition”, Algebra Universalis, 54:3 (2005), 301–321 | DOI | MR | Zbl

[18] Perkins P., “Bases for equational theories of semigroups”, J. Algebra, 11:2 (1969), 298–314 | DOI | MR | Zbl

[19] Ren M. M., Zhao X. Z., “The varieties of semilattice-ordered semigroups satisfying $x^3\approx x$ and $xy\approx yx$”, Period. Math. Hungar., 72:2 (2016), 158–170 | DOI | MR | Zbl

[20] Ren M. M., Zhao X. Z., Shao Y., “The lattice of ai-semiring varieties satisfying $x^{n}\approx x$ and $xy\approx yx$”, Semigroup Forum, 100:2 (2020), 542–567 | DOI | MR | Zbl

[21] Ren M. M., Zhao X. Z., Wang A. F., “On the varieties of ai-semirings satisfying $x^{3}\approx x$”, Algebra Universalis, 77:4 (2017), 395–408 | DOI | MR | Zbl

[22] Ren M. M., Zhao X. Z., Volkov M. V., The Burnside Ai-Semiring Variety Defined by $x^{n}\approx x$ (to appear)

[23] {Shao Y., Ren M. M.} On the varieties generated by ai-semirings of order two, Semigroup Forum, 91:1 (2015), 171–184 | DOI | MR | Zbl

[24] Tarski A., “Equational logic and equational theories of algebras”, Stud. Logic Found. Math., 50 (1968), 275–288 | DOI | MR

[25] Vechtomov E. M., Petrov A. A., “Multiplicatively idempotent semirings”, J. Math. Sci., 206:6 (2015), 634–653 | DOI | MR | Zbl

[26] Volkov M. V., “The finite basis problem for finite semigroups”, Sci. Math. Jpn., 53:1 (2001), 171–199 | MR | Zbl

[27] Zhao X. Z., Guo Y. Q., Shum K. P., “$\mathcal{D}$-subvarieties of the variety of idempotent semirings”, Algebra Colloquium, 9:1 (2002), 15–28 | MR | Zbl

[28] Zhao X. Z., Shum K. P., Guo Y. Q., “$\mathcal{L}$-subvarieties of the variety of idempotent semirings”, Algebra Universalis, 46:1–2 (2001), 75–96 | DOI | MR | Zbl