@article{UMJ_2020_6_2_a11,
author = {Xianzhong Zhao and Miaomiao Ren and Sini\v{s}a Crvenkovi\'c and Yong Shao and Petar Dapi\'c},
title = {The variety generated by an ai-semiring of order three},
journal = {Ural mathematical journal},
pages = {117--132},
year = {2020},
volume = {6},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UMJ_2020_6_2_a11/}
}
TY - JOUR AU - Xianzhong Zhao AU - Miaomiao Ren AU - Siniša Crvenković AU - Yong Shao AU - Petar Dapić TI - The variety generated by an ai-semiring of order three JO - Ural mathematical journal PY - 2020 SP - 117 EP - 132 VL - 6 IS - 2 UR - http://geodesic.mathdoc.fr/item/UMJ_2020_6_2_a11/ LA - en ID - UMJ_2020_6_2_a11 ER -
Xianzhong Zhao; Miaomiao Ren; Siniša Crvenković; Yong Shao; Petar Dapić. The variety generated by an ai-semiring of order three. Ural mathematical journal, Tome 6 (2020) no. 2, pp. 117-132. http://geodesic.mathdoc.fr/item/UMJ_2020_6_2_a11/
[1] Dolinka I., “A nonfintely based finite semiring”, Int. J. Algebra Comput., 17:8 (2007), 1537–1551 | DOI | MR | Zbl
[2] Dolinka I., “A class of inherently nonfinitely based semirings”, Algebra Universalis, 60:1 (2009), 19–35 | DOI | MR | Zbl
[3] Dolinka I., “The finite basis problem for endomorphism semirings of finite semilattices with zero”, Algebra Universalis, 61:3–4 (2009), 441–448 | DOI | MR | Zbl
[4] Dolinka I., “A remark on nonfinitely based semirings”, Semigroup Forum, 78:2 (2009), 368–373 | DOI | MR | Zbl
[5] Ghosh S., Pastijn F., Zhao X. Z., “Varieties generated by ordered bands I”, Order, 22:2 (2005), 109–128 | DOI | MR | Zbl
[6] Kruse R. L., “Identities satisfied by a finite ring”, J. Algebra, 26:2 (1973), 298–318 | DOI | MR | Zbl
[7] Kuřil M., Polák L., “On varieties of semilattice-ordered semigroups”, Semigroup Forum, 71:1 (2005), 27–48 | DOI | MR | Zbl
[8] L'vov I. V., “Varieties of associative rings. I”, Algebra and Logic, 12:3 (1973), 150–167 | DOI | MR
[9] Lyndon R. C., “Identities in two-valued calculi.”, Trans. Amer. Math. Soc., 71:3 (1951), 457–457 | DOI | MR | Zbl
[10] Lyndon R. C., “Identities in finite algebras”, Proc. Amer. Math. Soc., 5 (1954), 8–9 | DOI | MR | Zbl
[11] McKenzie R., “Equational bases for lattice theories”, Math. Scand., 27 (1970), 24–38 | DOI | MR | Zbl
[12] {McKenzie R.} Tarski's finite basis problem is undecidable, Int. J. Algebra Comput., 6:1 (1996), 49–104 | DOI | MR | Zbl
[13] McKenzie R. C., Romanowska A., “Varieties of $\cdot$-distributive bisemilattices”, Contrib. Gen. Algebra, 1 (1979), 213–218 | MR
[14] McNulty G. F., Willard R., The Chautauqua Problem, Tarski's Finite Basis Problem, and Residual Bounds for 3-element Algebras (to appear)
[15] Oates S., Powell M. B., “Identical relations in finite groups”, J. Algebra, 1:1 (1964), 11–39 | DOI | MR | Zbl
[16] Pastijn F., “Varieties generated by ordered bands II”, Order, 22:2 (2005), 129–143 | DOI | MR | Zbl
[17] Pastijn F., Zhao X. Z., “Varieties of idempotent semirings with commutative addition”, Algebra Universalis, 54:3 (2005), 301–321 | DOI | MR | Zbl
[18] Perkins P., “Bases for equational theories of semigroups”, J. Algebra, 11:2 (1969), 298–314 | DOI | MR | Zbl
[19] Ren M. M., Zhao X. Z., “The varieties of semilattice-ordered semigroups satisfying $x^3\approx x$ and $xy\approx yx$”, Period. Math. Hungar., 72:2 (2016), 158–170 | DOI | MR | Zbl
[20] Ren M. M., Zhao X. Z., Shao Y., “The lattice of ai-semiring varieties satisfying $x^{n}\approx x$ and $xy\approx yx$”, Semigroup Forum, 100:2 (2020), 542–567 | DOI | MR | Zbl
[21] Ren M. M., Zhao X. Z., Wang A. F., “On the varieties of ai-semirings satisfying $x^{3}\approx x$”, Algebra Universalis, 77:4 (2017), 395–408 | DOI | MR | Zbl
[22] Ren M. M., Zhao X. Z., Volkov M. V., The Burnside Ai-Semiring Variety Defined by $x^{n}\approx x$ (to appear)
[23] {Shao Y., Ren M. M.} On the varieties generated by ai-semirings of order two, Semigroup Forum, 91:1 (2015), 171–184 | DOI | MR | Zbl
[24] Tarski A., “Equational logic and equational theories of algebras”, Stud. Logic Found. Math., 50 (1968), 275–288 | DOI | MR
[25] Vechtomov E. M., Petrov A. A., “Multiplicatively idempotent semirings”, J. Math. Sci., 206:6 (2015), 634–653 | DOI | MR | Zbl
[26] Volkov M. V., “The finite basis problem for finite semigroups”, Sci. Math. Jpn., 53:1 (2001), 171–199 | MR | Zbl
[27] Zhao X. Z., Guo Y. Q., Shum K. P., “$\mathcal{D}$-subvarieties of the variety of idempotent semirings”, Algebra Colloquium, 9:1 (2002), 15–28 | MR | Zbl
[28] Zhao X. Z., Shum K. P., Guo Y. Q., “$\mathcal{L}$-subvarieties of the variety of idempotent semirings”, Algebra Universalis, 46:1–2 (2001), 75–96 | DOI | MR | Zbl