Hahn's problem with respect to some perturbations of the raising operator $(X-c)$
Ural mathematical journal, Tome 6 (2020) no. 2, pp. 15-24

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study the Hahn's problem with respect to some raising operators perturbed of the operator $X-c$, where $c$ is an arbitrary complex number. More precisely, the two following characterizations hold: up to a normalization, the $q$-Hermite (resp. Charlier) polynomial is the only $H_{\alpha,q}$-classical (resp. \linebreak $\mathcal{S}_{\lambda}$-classical) orthogonal polynomial, where $H_{\alpha, q}:=X+\alpha H_q$ and $\mathcal{S}_{\lambda}:=(X+1)-\lambda\tau_{-1}$.
Keywords: linear functional, $\mathcal{O}$-classical polynomials, Raising operators, $q$-Hermite polynomials, Charlier polynomials.
Mots-clés : orthogonal polynomials
@article{UMJ_2020_6_2_a1,
     author = {Baghdadi Aloui and Jihad Souissi},
     title = {Hahn's problem with respect to some perturbations of the raising operator $(X-c)$},
     journal = {Ural mathematical journal},
     pages = {15--24},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2020_6_2_a1/}
}
TY  - JOUR
AU  - Baghdadi Aloui
AU  - Jihad Souissi
TI  - Hahn's problem with respect to some perturbations of the raising operator $(X-c)$
JO  - Ural mathematical journal
PY  - 2020
SP  - 15
EP  - 24
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UMJ_2020_6_2_a1/
LA  - en
ID  - UMJ_2020_6_2_a1
ER  - 
%0 Journal Article
%A Baghdadi Aloui
%A Jihad Souissi
%T Hahn's problem with respect to some perturbations of the raising operator $(X-c)$
%J Ural mathematical journal
%D 2020
%P 15-24
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UMJ_2020_6_2_a1/
%G en
%F UMJ_2020_6_2_a1
Baghdadi Aloui; Jihad Souissi. Hahn's problem with respect to some perturbations of the raising operator $(X-c)$. Ural mathematical journal, Tome 6 (2020) no. 2, pp. 15-24. http://geodesic.mathdoc.fr/item/UMJ_2020_6_2_a1/