Hahn's problem with respect to some perturbations of the raising operator $(X-c)$
Ural mathematical journal, Tome 6 (2020) no. 2, pp. 15-24 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we study the Hahn's problem with respect to some raising operators perturbed of the operator $X-c$, where $c$ is an arbitrary complex number. More precisely, the two following characterizations hold: up to a normalization, the $q$-Hermite (resp. Charlier) polynomial is the only $H_{\alpha,q}$-classical (resp. \linebreak $\mathcal{S}_{\lambda}$-classical) orthogonal polynomial, where $H_{\alpha, q}:=X+\alpha H_q$ and $\mathcal{S}_{\lambda}:=(X+1)-\lambda\tau_{-1}$.
Keywords: linear functional, $\mathcal{O}$-classical polynomials, Raising operators, $q$-Hermite polynomials, Charlier polynomials.
Mots-clés : orthogonal polynomials
@article{UMJ_2020_6_2_a1,
     author = {Baghdadi Aloui and Jihad Souissi},
     title = {Hahn's problem with respect to some perturbations of the raising operator $(X-c)$},
     journal = {Ural mathematical journal},
     pages = {15--24},
     year = {2020},
     volume = {6},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2020_6_2_a1/}
}
TY  - JOUR
AU  - Baghdadi Aloui
AU  - Jihad Souissi
TI  - Hahn's problem with respect to some perturbations of the raising operator $(X-c)$
JO  - Ural mathematical journal
PY  - 2020
SP  - 15
EP  - 24
VL  - 6
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UMJ_2020_6_2_a1/
LA  - en
ID  - UMJ_2020_6_2_a1
ER  - 
%0 Journal Article
%A Baghdadi Aloui
%A Jihad Souissi
%T Hahn's problem with respect to some perturbations of the raising operator $(X-c)$
%J Ural mathematical journal
%D 2020
%P 15-24
%V 6
%N 2
%U http://geodesic.mathdoc.fr/item/UMJ_2020_6_2_a1/
%G en
%F UMJ_2020_6_2_a1
Baghdadi Aloui; Jihad Souissi. Hahn's problem with respect to some perturbations of the raising operator $(X-c)$. Ural mathematical journal, Tome 6 (2020) no. 2, pp. 15-24. http://geodesic.mathdoc.fr/item/UMJ_2020_6_2_a1/

[1] Abdelkarim F., Maroni P., “The $D_\omega$-classical orthogonal polynomials”, Result. Math., 32:1–2 (1997), 1–28 | DOI | MR | Zbl

[2] Aloui B., “Characterization of Laguerre polynomials as orthogonal polynomials connected by the Laguerre degree raising shift operator”, Ramanujan J., 45:2 (2018), 475–481 | DOI | MR | Zbl

[3] Aloui B., “Chebyshev polynomials of the second kind via raising operator preserving the orthogonality”, Period. Math. Hung., 76:1 (2018), 126–132 | DOI | MR | Zbl

[4] Aloui B., Khériji L., “Connection formulas and representations of Laguerre polynomials in terms of the action of linear differential operators”, Probl. Anal. Issues Anal., 8(26):3 (2019), 24–37 | DOI | MR | Zbl

[5] Area I., Godoy A., Ronveaux A., Zarzo A., “Classical symmetric orthogonal polynomials of a discrete variable”, Integral Transforms Spec. Funct., 15:1 (2004), 1–12 | DOI | MR | Zbl

[6] Ben Cheikh Y., Gaied M., “Characterization of the Dunkl-classical symmetric orthogonal polynomials”, Appl. Math. Comput., 187:1 (2007), 105—114 | DOI | MR | Zbl

[7] Ben Salah I., Ghressi A., Khériji L., “A characterization of symmetric $T_{\mu}$-classical monic orthogonal polynomials by a structure relation”, Integral Transforms Spec. Funct., 25:6 (2014), 423–432 | DOI | MR | Zbl

[8] Bouanani A., Khériji L., Tounsi M. I., “Characterization of $q$-Dunkl Appell symmetric orthogonal $q$-polynomials”, Expo. Math., 28:4 (2010), 325–336 | DOI | MR | Zbl

[9] Chaggara H., “Operational rules and a generalized Hermite polynomials”, J. Math. Anal. Appl., 332:1 (2007), 11–21 | DOI | MR | Zbl

[10] Chihara T.S., An Introduction to Orthogonal Polynomials, Gordon and Breach, New York, 1978, 249 pp. | MR | Zbl

[11] Hahn W., “Über die Jacobischen polynome und zwei verwandte polynomklassen”, Math. Z., 39 (1935), 634–638 | DOI | MR

[12] Khériji L., Maroni P., “The $H_q$-classical orthogonal polynomials”, Acta. Appl. Math., 71:1 (2002), 49–115 | DOI | MR

[13] Koornwinder T.H., “Lowering and raising operators for some special orthogonal polynomials”, v. Jack, Hall-Littlewood and Macdonald Polynomials, Contemp. Math., eds. V.B. Kuznetsov, S. Sahi, 2006, 227–239 | DOI | MR

[14] Maroni P., Mejri M., “The $I_{(q,\omega)}$-classical orthogonal polynomials”, Appl. Numer. Math., 43:4 (2002), 423–458 | DOI | MR | Zbl

[15] Maroni P., Fonctions Eulériennes, Polynômes Orthogonaux Classiques Techniques de l'Ingénieur, Traité Généralités (Sciences Fondamentales), v. 154, 1994, 30 pp.

[16] Maroni P., “Une théorie algébrique des polynômes orthogonaux. Application aux polynômes orthogonaux semi-classiques”, Orthogonal Polynomials and their Applications, IMACS Ann. Comput. Appl. Math., v. 9, eds. C. Brezinski et al., Baltzer, Basel, 1991, 95–130 | MR | Zbl

[17] Maroni P., “Variations autour des polynmes orthogonaux classiques”, C. R. Acad. Sci. Paris Sér. I Math., 313 (1991), 209–212 | MR | Zbl

[18] Sonine N. J., “On the approximate computation of definite integrals and on the entire functions occurring there”, Warsch. Univ. Izv., 18 (1887), 1–76

[19] Srivastava H. M., Ben Cheikh Y., “Orthogonality of some polynomial sets via quasi-monomiality”, Appl. Math. Comput., 141:2–3 (2003), 415–425 | DOI | MR | Zbl