@article{UMJ_2020_6_1_a9,
author = {Victor S. Polenov and Lyubov A. Kukarskikh and Dmitry A. Nitsak},
title = {The dynamic deformation of three-component porous media},
journal = {Ural mathematical journal},
pages = {130--136},
year = {2020},
volume = {6},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UMJ_2020_6_1_a9/}
}
TY - JOUR AU - Victor S. Polenov AU - Lyubov A. Kukarskikh AU - Dmitry A. Nitsak TI - The dynamic deformation of three-component porous media JO - Ural mathematical journal PY - 2020 SP - 130 EP - 136 VL - 6 IS - 1 UR - http://geodesic.mathdoc.fr/item/UMJ_2020_6_1_a9/ LA - en ID - UMJ_2020_6_1_a9 ER -
Victor S. Polenov; Lyubov A. Kukarskikh; Dmitry A. Nitsak. The dynamic deformation of three-component porous media. Ural mathematical journal, Tome 6 (2020) no. 1, pp. 130-136. http://geodesic.mathdoc.fr/item/UMJ_2020_6_1_a9/
[1] Biot M. A., “Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-Frequency Range”, J. Acoust. Soc. America, 28:2 (1956), 168–178 | DOI | MR
[2] Biot M. A., “Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher Frequency Range”, J. Acoust. Soc. America, 28:2 (1956), 179–191 | DOI | MR
[3] Biot M. A., “Mechanics of deformation and acoustic propagation in porous media”, J. Appl. Phys., 33:4 (1962), 1483–1498 | DOI | MR
[4] Bronstein K. A., Semendyaev I. N., Spravochnik po matematike dlya inzhenerov i uchashchihsya vtuzov [Maths Reference for Engineers and University Students], Moscow, 1964, 608 pp. (in Russian)
[5] Bykovtsev G. I., Verveiko N. D., “O rasprostranenii voln v uprugo-vyazko-plasticheskoi crede [On the propagation of waves in an elastic-viscous-plastic medium]”, Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela, 1966, no. 4, 111–123 (in Russian)
[6] Frenkel Ya. I., “K teorii seysmichescikh i seysmoelectrichescikh yavleny vo vlazhnoi pochve [Toward a theory of seismic and seismoelectric phenomena in the moist soil]”, Izv. ANSSR. Ser. Gegr. Geophis [Proceedings of the SSR Academy of Sciences. The Series of Geography and Geophysics], 8:4 (1944), 133–150 (in Russian) | MR | Zbl
[7] Kukarskikh L. A., Polenov V. S., “Advance of waves in fluid saturated elastic–viscoplastic porous medium”, Bull. Voronezh St. Tekh. Univ., 9:8 (2012), 57–60 (in Russian)
[8] Maslikova T. I., Polenov V. S., “The propagation of unsteady elastic waves in homogeneous porous media”, Mech. Solids., 40:1 (2005), 86–89
[9] Polenov V. S., “Osnovnye uravneniya dinamichesckogo demphirovaniya trekhkomponentnykh sred [The basic equations of the dynamic deformation of three-component media]”, Sovremennye tendentsii razvitiya estesvoznaniya i tekhnicheskikh nayk: Sbornik nauchnykh trudov po materialam MNPK.[Modern trends in the development of natural sciences and technical sciences: A collection of scientific papers based on materials of the IPPC], Belgorod, 2018, 31–34 (in Russian)
[10] Polenov V. S., Chigarev A. V., “Mathematical modeling of shock waves in inhomogeneous viscoelastic two–component media”, Appl. Math. Phys., 6:5 (2018), 997–1005 | DOI
[11] Polenov V. S., Nitsak D. A., “Metematicheskoe modelirovanie akusticheskoi emissii v nasyschennych zhidkostew dvukhkomponentnykh sredach”, Proc. XI Int. Sci. Pract. Conf. “Science of Russia: goals and objectives” (Oct. 10, 2018, Ekaterinburg, Russia), v. 2, 2018, 52–58 (in Russian) | DOI
[12] Rakhmatulin Kh. A., Gazovaya i volnovaya dinamika [Gas and Wave Dynamics], MSU, M., 1983, 200 pp. (in Russian)
[13] Reznichenko Yu. V., “O rasprostranenii seysmichescikh voln v discretnykh i heterogennykh sredakh [On the propagation of seismic waves in discrete and heterogeneous media]”, Izv. Akad. Nauk SSSR. Ser. Geogr. Geophys., 13 (1949), 115–128 (in Russian)
[14] Thomas T. Y., Plastic Flow and Fracture in Solids, Acad. Press, New York, 1961, 267 pp. | MR | Zbl