The dynamic deformation of three-component porous media
Ural mathematical journal, Tome 6 (2020) no. 1, pp. 130-136

Voir la notice de l'article provenant de la source Math-Net.Ru

A mathematical model of the dynamic deformation of three-component elastic media saturated with liquid and gas, given by elastic moduli and coefficients characterizing the porosity and compressibility of the liquid and gas, is considered. Formulas for determining the propagation velocity of monochromatic waves in ternary porous media are obtained. The existence of three longitudinal waves depends on the discriminant of a cubic equation and the velocity ratio.
Keywords: Elasticity, Medium, Fluid, Stress, Deformation, Displacement.
@article{UMJ_2020_6_1_a9,
     author = {Victor S. Polenov and Lyubov A. Kukarskikh and Dmitry A. Nitsak},
     title = {The dynamic deformation of three-component porous media},
     journal = {Ural mathematical journal},
     pages = {130--136},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2020_6_1_a9/}
}
TY  - JOUR
AU  - Victor S. Polenov
AU  - Lyubov A. Kukarskikh
AU  - Dmitry A. Nitsak
TI  - The dynamic deformation of three-component porous media
JO  - Ural mathematical journal
PY  - 2020
SP  - 130
EP  - 136
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UMJ_2020_6_1_a9/
LA  - en
ID  - UMJ_2020_6_1_a9
ER  - 
%0 Journal Article
%A Victor S. Polenov
%A Lyubov A. Kukarskikh
%A Dmitry A. Nitsak
%T The dynamic deformation of three-component porous media
%J Ural mathematical journal
%D 2020
%P 130-136
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UMJ_2020_6_1_a9/
%G en
%F UMJ_2020_6_1_a9
Victor S. Polenov; Lyubov A. Kukarskikh; Dmitry A. Nitsak. The dynamic deformation of three-component porous media. Ural mathematical journal, Tome 6 (2020) no. 1, pp. 130-136. http://geodesic.mathdoc.fr/item/UMJ_2020_6_1_a9/