The dynamic deformation of three-component porous media
Ural mathematical journal, Tome 6 (2020) no. 1, pp. 130-136
Voir la notice de l'article provenant de la source Math-Net.Ru
A mathematical model of the dynamic deformation of three-component elastic media saturated with liquid and gas, given by elastic moduli and coefficients characterizing the porosity and compressibility of the liquid and gas, is considered. Formulas for determining the propagation velocity of monochromatic waves in ternary porous media are obtained. The existence of three longitudinal waves depends on the discriminant of a cubic equation and the velocity ratio.
Keywords:
Elasticity, Medium, Fluid, Stress, Deformation, Displacement.
@article{UMJ_2020_6_1_a9,
author = {Victor S. Polenov and Lyubov A. Kukarskikh and Dmitry A. Nitsak},
title = {The dynamic deformation of three-component porous media},
journal = {Ural mathematical journal},
pages = {130--136},
publisher = {mathdoc},
volume = {6},
number = {1},
year = {2020},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UMJ_2020_6_1_a9/}
}
TY - JOUR AU - Victor S. Polenov AU - Lyubov A. Kukarskikh AU - Dmitry A. Nitsak TI - The dynamic deformation of three-component porous media JO - Ural mathematical journal PY - 2020 SP - 130 EP - 136 VL - 6 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UMJ_2020_6_1_a9/ LA - en ID - UMJ_2020_6_1_a9 ER -
Victor S. Polenov; Lyubov A. Kukarskikh; Dmitry A. Nitsak. The dynamic deformation of three-component porous media. Ural mathematical journal, Tome 6 (2020) no. 1, pp. 130-136. http://geodesic.mathdoc.fr/item/UMJ_2020_6_1_a9/