A new generalized varentropy and its properties
Ural mathematical journal, Tome 6 (2020) no. 1, pp. 114-129
Voir la notice de l'article provenant de la source Math-Net.Ru
The variance of Shannon information related to the random variable $X$, which is called varentropy, is a measurement that indicates, how the information content of $X$ is scattered around its entropy and explains its various applications in information theory, computer sciences, and statistics. In this paper, we introduce a new generalized varentropy based on the Tsallis entropy and also obtain some results and bounds for it. We compare the varentropy with the Tsallis varentropy. Moreover, we explain the Tsallis varentropy of the order statistics and analyse this concept in residual (past) lifetime distributions and then introduce two new classes of distributions by them.
Keywords:
Generalized varentropy, Past Tsallis varentropy, Residual Tsallis varentropy, Tsallis varentropy, Varentropy.
@article{UMJ_2020_6_1_a8,
author = {S. Maadani and G. Mohtashami Borzadaran and A. Rezaei Roknabadi},
title = {A new generalized varentropy and its properties},
journal = {Ural mathematical journal},
pages = {114--129},
publisher = {mathdoc},
volume = {6},
number = {1},
year = {2020},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UMJ_2020_6_1_a8/}
}
TY - JOUR AU - S. Maadani AU - G. Mohtashami Borzadaran AU - A. Rezaei Roknabadi TI - A new generalized varentropy and its properties JO - Ural mathematical journal PY - 2020 SP - 114 EP - 129 VL - 6 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UMJ_2020_6_1_a8/ LA - en ID - UMJ_2020_6_1_a8 ER -
S. Maadani; G. Mohtashami Borzadaran; A. Rezaei Roknabadi. A new generalized varentropy and its properties. Ural mathematical journal, Tome 6 (2020) no. 1, pp. 114-129. http://geodesic.mathdoc.fr/item/UMJ_2020_6_1_a8/