@article{UMJ_2020_6_1_a8,
author = {S. Maadani and G. Mohtashami Borzadaran and A. Rezaei Roknabadi},
title = {A new generalized varentropy and its properties},
journal = {Ural mathematical journal},
pages = {114--129},
year = {2020},
volume = {6},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UMJ_2020_6_1_a8/}
}
S. Maadani; G. Mohtashami Borzadaran; A. Rezaei Roknabadi. A new generalized varentropy and its properties. Ural mathematical journal, Tome 6 (2020) no. 1, pp. 114-129. http://geodesic.mathdoc.fr/item/UMJ_2020_6_1_a8/
[1] Abbasnejad M., Arghami N. R., “Renyi entropy properties of order statistics”, Comm. Statist. Theory Methods, 40:1 (2010), 40–52 | DOI | MR
[2] Afhami B., Madadi M., Rezapour M., “Goodness-of-fit test based on Shannon entropy of $k$-record values from the generalized”, J. Stat. Sci., 9:1 (2015), 43–60
[3] Arikan E., “Varentropy decreases under the polar transform”, IEEE Trans. Inform. Theory, 62:6 (2016), 3390–3400 | DOI | MR | Zbl
[4] Arnold B. C., Balakrishnan N., Nagaraja H. N., A First Course in Order Statistics, Classics Appl. Math., 54, SIAM, Philadelphia, 2008, 279 pp. | DOI | MR | Zbl
[5] Baratpour S., Ahmadi J., Arghami N. R., “Characterizations based on Rényi entropy of order statistics and record values”, J. Statist. Plann. Inference, 138:8 (2008), 2544–2551 | DOI | MR | Zbl
[6] Baratpour S., Khammar A., “Tsallis entropy properties of order statistics and some stochastic comparisons”, J. Statist. Res. Iran, 13:1 (2016), 25–41 | DOI | MR
[7] Bobkov S., Madiman M., “Concentration of the information in data with log-concave distributions”, Ann. Probab., 39:4 (2011), 1528–1543 https://projecteuclid.org/euclid.aop/1312555807 | DOI | MR | Zbl
[8] David H. A., Nagaraja H. N., Order Statistics, Wiley Ser. Probab. Stat. Hoboken, 3rd, John Wiley Sons, Inc., Hoboken, New Jersey, 2003, 458 pp. | DOI | MR | Zbl
[9] Di Crescenzo A., Longobardi M., “Statistic comparisons of cumulative entropies”, Stochastic Orders in Reliability and Risk, v. 208, eds. H. Li, X. Li., Springer, New York, 2013, 167–182 | DOI | MR | Zbl
[10] Di Crescenzo A., Paolillo L., “Analysis and applications of the residual varentropy of random lifetimes”, Probab. Engrg. Inform. Sci., 2020, 1–19 | DOI
[11] Ebrahimi N., Kirmani S. N. U. A., “Some results on ordering of survival functions through uncertainty”, Statist. Probab. Lett., 29:2 (1996), 167–176 | DOI | MR | Zbl
[12] Ebrahimi N., Soofi E. S., Zahedi H., “Information properties of order statistics and spacing”, IEEE Trans. Inform. Theory, 50:1 (2004), 177–183 | DOI | MR | Zbl
[13] Enomoto R., Okamoto N., Seo T., “On the asymptotic normality of test statistics using Song`s kurtosis”, J. Stat. Theory Pract., 7:1 (2013), 102–119 | DOI | MR
[14] Gupta R. C., Taneja H. C., Thapliyal R., “Stochastic comparisons based on residual entropy of order statistics and some characterization results”, J. Stat. Theory Appl., 13:1 (2014), 27–37 | DOI | MR
[15] Kontoyiannis I., Verdú S., “Optimal lossless compression: Source varentropy and dispersion”, IEEE Trans. Inform. Theory, 60:2 (2014), 777–795 | DOI | MR | Zbl
[16] Liu J., Information Theoretic Content and Probability, Ph.D. Thesis, University of Florida, 2007 | MR
[17] Nanda A. K., Paul P., “Some results on generalized residual entropy”, Inform. Sci., 176:1 (2006), 27–47 | DOI | MR | Zbl
[18] Park S., “The entropy of consecutive order statistics”, IEEE Trans. Inform. Theory, 41:6 (1995), 2003–2007 | DOI | MR | Zbl
[19] Psarrakos G., Navarro J., “Generalized cumulative residual entropy and record values”, Metrika, 76 (2013), 623–640 | DOI | MR | Zbl
[20] Raqab M. Z., Amin W. A., “Some ordering result on order statistics and record values”, IAPQR Trans., 21:1 (1996), 1–8 | MR | Zbl
[21] Shannon C. E., “A mathematical theory of communication”, Bell System Technical J., 27:3 (1948), 379–423 | DOI | MR | Zbl
[22] Song K.-S., “Rényi information, log likelihood and an intrinsic distribution measure”, J. Statist. Plann. Inference, 93:1–2 (2001), 51–69 | DOI | MR | Zbl
[23] Tsallis C., “Possible generalization of Boltzmann–Gibbs statistics”, J. Stat. Phys., 52 (1988), 479–487 | DOI | MR | Zbl
[24] Vikas Kumar, Taneja H. C., “A generalized entropy-based residual lifetime distributions”, Int. J. Biomath., 04:02 (2011), 171–148 | DOI | MR
[25] Wilk G., Włodarczyk Z., “Example of a possible interpretation of Tsallis entropy”, Phys. A: Stat. Mech. Appl., 387:19–20 (2008), 4809–4813 | DOI | MR
[26] Wong K. M., Chen S., “The entropy of ordered sequences and order statistics”, IEEE Trans. Inform. Theory, 36:2 (1990), 276–284 | DOI | MR | Zbl
[27] Zarezadeh S., Asadi M., “Results on residual Rényi entropy of order statistics and record values”, Inform. Sci., 180:21 (2010), 4195–4206 | DOI | MR | Zbl
[28] Zhang Z., “Uniform estimates on the Tsallis entropies”, Lett. Math. Phys., 80 (2007), 171–181 | DOI | MR | Zbl
[29] Zografos K., “On Mardia`s and Song`s measures of kurtosis in elliptical distributions”, J. Multivariate Anal., 99:5 (2008), 858–879 | DOI | MR | Zbl