Growth of $\phi$-order solutions of linear differential equations with meromorphic coefficients on the complex plane
Ural mathematical journal, Tome 6 (2020) no. 1, pp. 95-113
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we study the growth of solutions of higher order linear differential equations with meromorphic coefficients of $\phi$-order on the complex plane. By considering the concepts of $\phi$-order and $\phi$-type, we will extend and improve many previous results due to Chyzhykov-Semochko, Belaïdi, Cao-Xu-Chen, Kinnunen.
Keywords:
Linear differential equations, Entire function, Meromorphic function, $\phi$-order, $\phi$-type.
@article{UMJ_2020_6_1_a7,
author = {Mohamed Abdelhak Kara and Benharrat Bela{\"\i}di},
title = {Growth of $\phi$-order solutions of linear differential equations with meromorphic coefficients on the complex plane},
journal = {Ural mathematical journal},
pages = {95--113},
publisher = {mathdoc},
volume = {6},
number = {1},
year = {2020},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UMJ_2020_6_1_a7/}
}
TY - JOUR AU - Mohamed Abdelhak Kara AU - Benharrat Belaïdi TI - Growth of $\phi$-order solutions of linear differential equations with meromorphic coefficients on the complex plane JO - Ural mathematical journal PY - 2020 SP - 95 EP - 113 VL - 6 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UMJ_2020_6_1_a7/ LA - en ID - UMJ_2020_6_1_a7 ER -
%0 Journal Article %A Mohamed Abdelhak Kara %A Benharrat Belaïdi %T Growth of $\phi$-order solutions of linear differential equations with meromorphic coefficients on the complex plane %J Ural mathematical journal %D 2020 %P 95-113 %V 6 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/UMJ_2020_6_1_a7/ %G en %F UMJ_2020_6_1_a7
Mohamed Abdelhak Kara; Benharrat Belaïdi. Growth of $\phi$-order solutions of linear differential equations with meromorphic coefficients on the complex plane. Ural mathematical journal, Tome 6 (2020) no. 1, pp. 95-113. http://geodesic.mathdoc.fr/item/UMJ_2020_6_1_a7/