Growth of $\phi$-order solutions of linear differential equations with meromorphic coefficients on the complex plane
Ural mathematical journal, Tome 6 (2020) no. 1, pp. 95-113 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we study the growth of solutions of higher order linear differential equations with meromorphic coefficients of $\phi$-order on the complex plane. By considering the concepts of $\phi$-order and $\phi$-type, we will extend and improve many previous results due to Chyzhykov-Semochko, Belaïdi, Cao-Xu-Chen, Kinnunen.
Keywords: Linear differential equations, Entire function, Meromorphic function, $\phi$-order, $\phi$-type.
@article{UMJ_2020_6_1_a7,
     author = {Mohamed Abdelhak Kara and Benharrat Bela{\"\i}di},
     title = {Growth of $\phi$-order solutions of linear differential equations with meromorphic coefficients on the complex plane},
     journal = {Ural mathematical journal},
     pages = {95--113},
     year = {2020},
     volume = {6},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2020_6_1_a7/}
}
TY  - JOUR
AU  - Mohamed Abdelhak Kara
AU  - Benharrat Belaïdi
TI  - Growth of $\phi$-order solutions of linear differential equations with meromorphic coefficients on the complex plane
JO  - Ural mathematical journal
PY  - 2020
SP  - 95
EP  - 113
VL  - 6
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UMJ_2020_6_1_a7/
LA  - en
ID  - UMJ_2020_6_1_a7
ER  - 
%0 Journal Article
%A Mohamed Abdelhak Kara
%A Benharrat Belaïdi
%T Growth of $\phi$-order solutions of linear differential equations with meromorphic coefficients on the complex plane
%J Ural mathematical journal
%D 2020
%P 95-113
%V 6
%N 1
%U http://geodesic.mathdoc.fr/item/UMJ_2020_6_1_a7/
%G en
%F UMJ_2020_6_1_a7
Mohamed Abdelhak Kara; Benharrat Belaïdi. Growth of $\phi$-order solutions of linear differential equations with meromorphic coefficients on the complex plane. Ural mathematical journal, Tome 6 (2020) no. 1, pp. 95-113. http://geodesic.mathdoc.fr/item/UMJ_2020_6_1_a7/

[1] Belaïdi B., “Fast growing solutions to linear differential equations with entire coefficients having the same $\rho_{\varphi }$-order”, J. Math. Appl., 42 (2019), 63–77 | DOI | MR | Zbl

[2] Belaïdi B., “Growth of $\rho_{\varphi }$-order solutions of linear differential equations with entire coefficients”, Pan-American Math. J., 27:4 (2017), 26–42 http://www.internationalpubls.com | MR

[3] Bela\"{i}di B., “Growth and oscillation of solutions to linear differential equations with entire coefficients having the same order”, Electron. J. Differential Equations., 2009, no. 70, 1– 10 https://ejde.math.txstate.edu | MR

[4] Bernal L. G., “On growth k-order of solutions of a complex homogeneous linear differential equation”, Proc. Amer. Math. Soc., 101:2 (1987), 317– 322 | DOI | MR | Zbl

[5] Cao T.-B., Xu J. F., Chen Z. X., “On the meromorphic solutions of linear differential equations on the complex plane”, J. Math. Anal. Appl., 364:1 (2010), 130– 142 | DOI | MR | Zbl

[6] Chiang Y.-M., Hayman W. K., “Estimates on the growth of meromorphic solutions of linear differential equations”, Comment. Math. Helv., 79:3 (2004), 451– 470 | DOI | MR | Zbl

[7] Chyzhykov I., Semochko N., “Fast growing entire solutions of linear differential equations”, Math. Bull. Shevchenko Sci. Soc., 13 (2016), 68– 83 | Zbl

[8] Frank G., Hellerstein S., “On the meromorphic solutions of non-homogeneous linear differential equations with polynomial coefficients”, Proc. London Math. Soc., 53:3 (1986), 407– 428 | DOI | MR | Zbl

[9] Gundersen G. G., “Estimates for the logarithmic derivative of a meromorphic function, plus similar estimates”, J. London Math. Soc., 37:1 (1988), 88– 104 | DOI | MR | Zbl

[10] Hayman W. K., Meromorphic Functions, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1964, 191 pp. | MR | Zbl

[11] Juneja O. P., Kapoor G. P., Bajpai S. K., “On the $(p, q)$-order and lower $(p, q)$-order of an entire function”, J. Reine Angew. Math., 282 (1976), 53– 67 | DOI | MR | Zbl

[12] Kara M. A., Bela\"{i}di B., “Some estimates of the $\phi$-order and the $\phi$-type of entire and meromorphic functions”, Int. J. Open Problems Complex Analysis, 10:3 (2019), 42– 58 http://www.i-csrs.org

[13] Kinnunen L., “Linear differential equations with solutions of finite iterated order”, Southeast Asian Bull. Math., 22:4 (1998), 385– 405 | MR | Zbl

[14] Laine I., Nevanlinna Theory and Complex Differential Equations, De Gruyter Studies in Mathematics, 15, Walter de Gruyter Co., Berlin, 1993, 341 pp. | DOI | MR

[15] Li L. M., Cao T. B., “Solutions for linear differential equations with meromorphic coefficients of $[p, q]$-order in the plane”, Electron. J. Differential Equations, 2012, no. 195, 1– 15 https://ejde.math.txstate.edu | MR | Zbl

[16] Liu J., Tu J., Shi L. Z., “Linear differential equations with entire coefficients of $[p, q]$-order in the complex plane”, J. Math. Anal. Appl., 372 (2010), 55– 67 | DOI | MR | Zbl

[17] Mulyava O. M., Sheremeta M. M., Trukhan Yu. S., “Properties of solutions of a heterogeneous differential equation of the second order”, Carpathian Math. Publ., 11:2 (2019), 379– 398 | DOI | MR | Zbl

[18] Nevanlinna R., “Zur theorie der meromorphen funktionen”, Acta Math., 46:1–2 (1925), 1– 99 (in German) | DOI | MR | Zbl

[19] Seneta E., Regularly Varying Functions, Lecture Notes in Math., 508, Springer-Verlag, Berlin–Heidelberg, 1976, 116 pp. | DOI | MR | Zbl

[20] Sheremeta M. N., “Connection between the growth of the maximum of the modulus of an entire function and the moduli of the coefficients of its power series expansion”, Izv. Vyssh. Uchebn. Zaved. Mat., 2 (1967), 100–108 (in Russian) | MR

[21] Tu J., Chen Z.-X., “Growth of solutions of complex differential equations with meromorphic coefficients of finite iterated order”, Southeast Asian Bull. Math., 33:1 (2009), 153–164 | MR | Zbl

[22] Yang L., Value Distribution Theory, Springer-Verlag, Berlin–Heidelberg, 1993, 269 pp. | DOI | MR | Zbl