Optimal control for a controlled ill-posed wave equation without requiring the Slater hypothesis
Ural mathematical journal, Tome 6 (2020) no. 1, pp. 84-94

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we investigate the problem of optimal control for an ill-posed wave equation without using the extra hypothesis of Slater i.e. the set of admissible controls has a non-empty interior. Firstly, by a controllability approach, we make the ill-posed wave equation a well-posed equation with some incomplete data initial condition. The missing data requires us to use the no-regret control notion introduced by Lions to control distributed systems with incomplete data. After approximating the no-regret control by a low-regret control sequence, we characterize the optimal control by a singular optimality system.
Keywords: Ill-posed wave equation, No-regret control, Incomplete data, Null-controllability.
Mots-clés : Carleman estimates
@article{UMJ_2020_6_1_a6,
     author = {Abdelhak Hafdallah},
     title = {Optimal control for a controlled ill-posed wave equation without requiring the {Slater} hypothesis},
     journal = {Ural mathematical journal},
     pages = {84--94},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2020_6_1_a6/}
}
TY  - JOUR
AU  - Abdelhak Hafdallah
TI  - Optimal control for a controlled ill-posed wave equation without requiring the Slater hypothesis
JO  - Ural mathematical journal
PY  - 2020
SP  - 84
EP  - 94
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UMJ_2020_6_1_a6/
LA  - en
ID  - UMJ_2020_6_1_a6
ER  - 
%0 Journal Article
%A Abdelhak Hafdallah
%T Optimal control for a controlled ill-posed wave equation without requiring the Slater hypothesis
%J Ural mathematical journal
%D 2020
%P 84-94
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UMJ_2020_6_1_a6/
%G en
%F UMJ_2020_6_1_a6
Abdelhak Hafdallah. Optimal control for a controlled ill-posed wave equation without requiring the Slater hypothesis. Ural mathematical journal, Tome 6 (2020) no. 1, pp. 84-94. http://geodesic.mathdoc.fr/item/UMJ_2020_6_1_a6/