Existence and exponential stability of positive periodic solutions for second-order dynamic equations
Ural mathematical journal, Tome 6 (2020) no. 1, pp. 42-53

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article, we establish the existence of positive periodic solutions for second-order dynamic equations on time scales. The main method used here is the Schauder fixed point theorem. The exponential stability of positive periodic solutions is also studied. The results obtained here extend some results in the literature. An example is also given to illustrate this work.
Keywords: Positive periodic solutions, Exponential stability, Schauder fixed point theorem, Dynamic equations
Mots-clés : Time scales.
@article{UMJ_2020_6_1_a3,
     author = {Faycal Bouchelaghem and Abdelouaheb Ardjouni and Ahcene Djoudi},
     title = {Existence and exponential stability of positive periodic solutions for second-order dynamic equations},
     journal = {Ural mathematical journal},
     pages = {42--53},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2020_6_1_a3/}
}
TY  - JOUR
AU  - Faycal Bouchelaghem
AU  - Abdelouaheb Ardjouni
AU  - Ahcene Djoudi
TI  - Existence and exponential stability of positive periodic solutions for second-order dynamic equations
JO  - Ural mathematical journal
PY  - 2020
SP  - 42
EP  - 53
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UMJ_2020_6_1_a3/
LA  - en
ID  - UMJ_2020_6_1_a3
ER  - 
%0 Journal Article
%A Faycal Bouchelaghem
%A Abdelouaheb Ardjouni
%A Ahcene Djoudi
%T Existence and exponential stability of positive periodic solutions for second-order dynamic equations
%J Ural mathematical journal
%D 2020
%P 42-53
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UMJ_2020_6_1_a3/
%G en
%F UMJ_2020_6_1_a3
Faycal Bouchelaghem; Abdelouaheb Ardjouni; Ahcene Djoudi. Existence and exponential stability of positive periodic solutions for second-order dynamic equations. Ural mathematical journal, Tome 6 (2020) no. 1, pp. 42-53. http://geodesic.mathdoc.fr/item/UMJ_2020_6_1_a3/