General quasilinear problems involving $p(x)$-Laplacian with Robin boundary condition
Ural mathematical journal, Tome 6 (2020) no. 1, pp. 30-41 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper deals with the existence and multiplicity of solutions for a class of quasilinear problems involving $p(x)$-Laplace type equation, namely \begin{equation*}\label{E11} \left\{\begin{array}{lll} -\mathrm{div}\, (a(| \nabla u|^{p(x)})| \nabla u|^{p(x)-2} \nabla u)= \lambda f(x,u)\text{in}\Omega,\\ n\cdot a(| \nabla u|^{p(x)})| \nabla u|^{p(x)-2} \nabla u +b(x)|u|^{p(x)-2}u=g(x,u) \text{on}\partial\Omega. \end{array}\right. \end{equation*} Our technical approach is based on variational methods, especially, the mountain pass theorem and the symmetric mountain pass theorem.
Keywords: $p(x)$-Laplacian, Mountain pass theorem, Critical point theory.
Mots-clés : Multiple solutions
@article{UMJ_2020_6_1_a2,
     author = {Hassan Belaouidel and Anass Ourraoui and Najib Tsouli},
     title = {General quasilinear problems involving $p(x)${-Laplacian} with {Robin} boundary condition},
     journal = {Ural mathematical journal},
     pages = {30--41},
     year = {2020},
     volume = {6},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2020_6_1_a2/}
}
TY  - JOUR
AU  - Hassan Belaouidel
AU  - Anass Ourraoui
AU  - Najib Tsouli
TI  - General quasilinear problems involving $p(x)$-Laplacian with Robin boundary condition
JO  - Ural mathematical journal
PY  - 2020
SP  - 30
EP  - 41
VL  - 6
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UMJ_2020_6_1_a2/
LA  - en
ID  - UMJ_2020_6_1_a2
ER  - 
%0 Journal Article
%A Hassan Belaouidel
%A Anass Ourraoui
%A Najib Tsouli
%T General quasilinear problems involving $p(x)$-Laplacian with Robin boundary condition
%J Ural mathematical journal
%D 2020
%P 30-41
%V 6
%N 1
%U http://geodesic.mathdoc.fr/item/UMJ_2020_6_1_a2/
%G en
%F UMJ_2020_6_1_a2
Hassan Belaouidel; Anass Ourraoui; Najib Tsouli. General quasilinear problems involving $p(x)$-Laplacian with Robin boundary condition. Ural mathematical journal, Tome 6 (2020) no. 1, pp. 30-41. http://geodesic.mathdoc.fr/item/UMJ_2020_6_1_a2/

[1] Allaoui M., El. Amrouss A., Ourraoui A., “Existence of infinitely many solutions for a Steklov problem involving the p(x)-Laplace operator”, Electron. J. Qual. Theory Differ. Equ., 2014, no. 20, 1–10 | DOI | MR

[2] Antontsev S., Shmarev S., “Chapter 1. Elliptic equations with anisotropic nonlinearity and nonstandard growth conditions”, Handbook of Differential Equations, Stationary Partial Differ. Equ., v. 3, eds. M. Chipot, P. Quittner, 2006, 1–100 | DOI | MR | Zbl

[3] Bocea M., Mihǎilescu M., “$\Gamma$-convergence of power-law functionals with variable exponents-convergence of power-law functionals with variable exponents”, Nonlinear Anal.: Theory, Methods, Appl., 73:1 (2010), 110–121 | DOI | MR | Zbl

[4] Bocea M., Mihǎilescu M., Popovici C., “On the asymptotic behavior of variable exponent power-law functionals and applications”, Ric. Mat., 59 (2010), 207–238 | DOI | MR | Zbl

[5] Chabrowski J., Fu Y., “Existence of solutions for $p(x)$-Laplacian problems on a bounded domain”, J. Math. Anal. Appl., 306:2 (2005), 604–618 | DOI | MR | Zbl

[6] Chen Y., Levine S., Rao M., “Variable exponent, linear growth functionals in image restoration”, SIAM J. Appl. Math., 66:2 (2006), 1383–1406 | DOI | MR | Zbl

[7] Dai G., “Infinitely many solutions for a $p(x)$-Laplacian equation in $\mathbb{R}^N$”, Nonlinear Anal.: Theory, Methods, Appl., 71:3–4 (2009), 1133–1139 | DOI | MR | Zbl

[8] Deng S.-G., “Positive solutions for Robin problem involving the $p(x)$-Laplacian”, J. Math. Anal. Appl., 360:2 (2009), 548–560 | DOI | MR | Zbl

[9] Deng S.-G., “Eigenvalues of the $p(x)$-Laplacian Steklov problem”, J. Math. Anal. Appl., 339:2 (2008), 925–937 | DOI | MR | Zbl

[10] Deng S.-G., “A local mountain pass theorem and applications to a double perturbed $p(x)$-Laplacian equations”, Appl. Math. Comput., 211:1 (2009), 234–241 | DOI | MR | Zbl

[11] Diening L., Hästö P., Nekvinda A., “Open problems in variable exponent Lebesgue and Sobolev spaces”, Function Spaces, Differential Operators And Nonlinear Analysis. Proc. Conference Held in Milovy (Milovy, Czech Republic. Milovy: Math. Inst. Acad. Sci. Czech, May 2–June 2, 2004), eds. Bohemian-Moravian Uplands. Drábek P., Rákosník J., 2004, 38–58 https://citeseerx.ist.psu.edu

[12] Diening L., Harjulehto P., Hästö P., Ruzicka M., Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Math, 2017, Springer-Verlag, Berlin, Heidelberg, 2011, 509 pp. | DOI | MR | Zbl

[13] Edmunds D. E., Rákosník J., “Sobolev embeddings with variable exponent”, Studia Math., 143:3 (2000), 267–293 | MR | Zbl

[14] El Amrouss A., Moradi F., Ourraoui A., “Neumann problem in divergence form modeled on the $p(x)$-Laplace equation”, Bol. Soc. Parana. Mat. (3), 3:2 (2014), 109–117 | DOI | MR | Zbl

[15] Fan X., Han X., “Existence and multiplicity of solutions for $p(x)$-Laplacian equations in $\mathbb{R}^N$”, Nonlinear Anal.: Theory Methods Appl., 59 (2004), 173–188 | DOI | MR | Zbl

[16] Fan X., Zhao D., “On the spaces $L^{p(x)}(\Omega)$ and $W^{m,p(x)}(\Omega)$.”, J. Math. Anal. Appl., 263:2 (2001), 424–446 | DOI | MR | Zbl

[17] Fan X.-L., Zhang Q.-H., “Existence of solutions for $p(x)$-Laplacian Dirichlet problem”, Nonlinear Anal.: Theory Methods Appl., 52:8 (2003), 1843–1852 | DOI | MR | Zbl

[18] Fu Y., Zhang X., “A multiplicity result for $p(x)$-Laplacian problem in $\mathbb{R}^N$”, Nonlinear Anal.: Theory, Methods, Appl., 70:6 (2009), 2261–2269 | DOI | MR | Zbl

[19] Juárez Hurtado E., Miyagaki O. H., Rodrigues R. S., “Existence and Multiplicity of Solutions for a Class of Elliptic Equations Without Ambrosetti–Rabinowitz Type Conditions”, J. Dynam. Differential Equations, 30 (2018), 405–432 | DOI | MR

[20] Kováčik O., Rákosník J., “On spaces $L^{p(x)}$ and $W^{k,p(x)}$”, Czechoslovak Math. J., 41:4 (1991), 592–618 https://dml.cz/handle/10338.dmlcz/102493 | DOI | MR | Zbl

[21] Mihǎilescu M., “On a class of nonlinear problems involving a $p(x)$-Laplace type operator”, Czechoslovak Math. J., 58:1 (2008), 155–172 https://dml.cz/handle/10338.dmlcz/128252 | MR | Zbl

[22] Ni W.-M., Serrin J., “Existence and non-existence theorems for ground states for quasilinear partial differential equations”, Att. Conveg. Lincei, 7 (1985), 231–257 | MR

[23] Ourraoui A., “Multiplicity results for Steklov problem with variable exponent”, Appl. Math. Comput., 277 (2016), 34–43 | DOI | MR | Zbl

[24] Ourraoui A., Some Results for Robin Type Problem Involving p(x)-Laplacian, Preptint.

[25] Pflüger K., “Existence and multiplicity of solutions to a $p$-Laplacian equation with nonlinear boundary condition”, Electron. J. Differential Equations, 1998:10 (1998), 1–13 http://ejde.math.unt.edu | MR

[26] Rabinowitz P. H., “Minimax Methods in Critical Point Theory with Applications to Differential Equations”, CBMS Regional Conference Series in Mathematics, 65, American Mathematical Society, Providence, Rhode Island, 1986, 100 pp. | MR | Zbl

[27] Růžička M., Electrorheological Fluids: Modeling and Mathematical Theory, v. 1748, Lecture Notes in Math., Springer-Verlag, Berlin, Heidelberg, 2002, 178 pp. | DOI | MR

[28] Silva E. A. B., Xavier M. S., “Multiplicity of solutions for quasilinear elliptic problems involving critical Sobolev exponents.”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 20:2 (2003), 341—358 | DOI | MR | Zbl

[29] Zhao D., Fan X. L., “On the Nemytskiǐ operators from $L^{p_1(x)}(\Omega)$ to $L^{p_2(x)}(\Omega)$”, J. Lanzhou Univ. Nat. Sci., 34:1 (1998), 1–5 (in Chinese) | MR

[30] Zhao J. F., Structure Theory of Banach Spaces, Wuhan Univ. Press, Wuhan, 1991 (in Chinese)

[31] Zhou Q.-M., Ge B., “Multiple solutions for a Robin-type differential inclusion problem involving the $p(x)$-Laplacian”, Math. Methods Appl. Sci., 40:18 (2013), 6229–6238 | DOI | MR

[32] Zhikov V. V., “Averaging of functionals of the calculus of variations and elasticity theory”, Math. USSR-Izv., 29:1 (1987), 33–66 | DOI | MR | Zbl