General quasilinear problems involving $p(x)$-Laplacian with Robin boundary condition
Ural mathematical journal, Tome 6 (2020) no. 1, pp. 30-41
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper deals with the existence and multiplicity of
solutions for a class of quasilinear problems involving $p(x)$-Laplace type equation, namely
\begin{equation*}\label{E11}
\left\{\begin{array}{lll}
-\mathrm{div}\, (a(| \nabla u|^{p(x)})| \nabla u|^{p(x)-2} \nabla u)= \lambda f(x,u)\text{in}\Omega,\\
n\cdot a(| \nabla u|^{p(x)})| \nabla u|^{p(x)-2} \nabla u +b(x)|u|^{p(x)-2}u=g(x,u) \text{on}\partial\Omega.
\end{array}\right.
\end{equation*}
Our technical approach is based on variational methods, especially, the mountain pass theorem and the symmetric mountain pass theorem.
Keywords:
$p(x)$-Laplacian, Mountain pass theorem, Critical point theory.
Mots-clés : Multiple solutions
Mots-clés : Multiple solutions
@article{UMJ_2020_6_1_a2,
author = {Hassan Belaouidel and Anass Ourraoui and Najib Tsouli},
title = {General quasilinear problems involving $p(x)${-Laplacian} with {Robin} boundary condition},
journal = {Ural mathematical journal},
pages = {30--41},
publisher = {mathdoc},
volume = {6},
number = {1},
year = {2020},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UMJ_2020_6_1_a2/}
}
TY - JOUR AU - Hassan Belaouidel AU - Anass Ourraoui AU - Najib Tsouli TI - General quasilinear problems involving $p(x)$-Laplacian with Robin boundary condition JO - Ural mathematical journal PY - 2020 SP - 30 EP - 41 VL - 6 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UMJ_2020_6_1_a2/ LA - en ID - UMJ_2020_6_1_a2 ER -
%0 Journal Article %A Hassan Belaouidel %A Anass Ourraoui %A Najib Tsouli %T General quasilinear problems involving $p(x)$-Laplacian with Robin boundary condition %J Ural mathematical journal %D 2020 %P 30-41 %V 6 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/UMJ_2020_6_1_a2/ %G en %F UMJ_2020_6_1_a2
Hassan Belaouidel; Anass Ourraoui; Najib Tsouli. General quasilinear problems involving $p(x)$-Laplacian with Robin boundary condition. Ural mathematical journal, Tome 6 (2020) no. 1, pp. 30-41. http://geodesic.mathdoc.fr/item/UMJ_2020_6_1_a2/