Moment problems in weighted $L^2$ spaces on the real line
Ural mathematical journal, Tome 6 (2020) no. 1, pp. 168-175 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For a class of sets with multiple terms $$ \{\lambda_n,\mu_n\}_{n=1}^{\infty}:=\{\underbrace{\lambda_1,\lambda_1,\dots,\lambda_1}_{\mu_1 - times}, \underbrace{\lambda_2,\lambda_2,\dots,\lambda_2}_{\mu_2 - times},\dots, \underbrace{\lambda_k,\lambda_k,\dots,\lambda_k}_{\mu_k - times},\dots\}, $$ having density $d$ counting multiplicities, and a doubly-indexed sequence of non-zero complex numbers\linebreak $\{d_{n,k}:\, n\in\mathbb{N},\, k=0,1,\dots ,\mu_n-1\} $ satisfying certain growth conditions, we consider a moment problem of the form $$ \int_{-\infty}^{\infty}e^{-2w(t)}t^k e^{\lambda_n t}f(t)\, dt=d_{n,k},\quad \forall\,\, n\in\mathbb{N}\quad \text{and}\quad k=0,1,2,\dots, \mu_n-1, $$ in weighted $L^2 (-\infty, \infty)$ spaces. We obtain a solution $f$ which extends analytically as an entire function, admitting a Taylor-Dirichlet series representation $$ f(z)=\sum_{n=1}^{\infty}\Big(\sum_{k=0}^{\mu_n-1}c_{n,k} z^k\Big) e^{\lambda_n z},\quad c_{n,k}\in \mathbb{C},\quad\forall\,\, z\in \mathbb{C}. $$ The proof depends on our previous work where we characterized the closed span of the exponential system $\{t^k e^{\lambda_n t}:\, n\in\mathbb{N},\,\, k=0,1,2,\dots,\mu_n-1\}$ in weighted $L^2 (-\infty, \infty)$ spaces, and also derived a sharp upper bound for the norm of elements of a biorthogonal sequence to the exponential system. The proof also utilizes notions from Non-Harmonic Fourier series such as Bessel and Riesz–Fischer sequences.
Keywords: Moment problems, Exponential systems, Biorthogonal families, Weighted Banach spaces, Bessel and Riesz–Fischer sequences.
@article{UMJ_2020_6_1_a13,
     author = {Elias Zikkos},
     title = {Moment problems in weighted $L^2$ spaces on the real line},
     journal = {Ural mathematical journal},
     pages = {168--175},
     year = {2020},
     volume = {6},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2020_6_1_a13/}
}
TY  - JOUR
AU  - Elias Zikkos
TI  - Moment problems in weighted $L^2$ spaces on the real line
JO  - Ural mathematical journal
PY  - 2020
SP  - 168
EP  - 175
VL  - 6
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UMJ_2020_6_1_a13/
LA  - en
ID  - UMJ_2020_6_1_a13
ER  - 
%0 Journal Article
%A Elias Zikkos
%T Moment problems in weighted $L^2$ spaces on the real line
%J Ural mathematical journal
%D 2020
%P 168-175
%V 6
%N 1
%U http://geodesic.mathdoc.fr/item/UMJ_2020_6_1_a13/
%G en
%F UMJ_2020_6_1_a13
Elias Zikkos. Moment problems in weighted $L^2$ spaces on the real line. Ural mathematical journal, Tome 6 (2020) no. 1, pp. 168-175. http://geodesic.mathdoc.fr/item/UMJ_2020_6_1_a13/

[1] Anderson J. M., Binmore K. G., “Closure theorems with applications to entire functions with gaps”, Trans. Amer. Math. Soc., 161 (1971), 381–400 | DOI | MR | Zbl

[2] Borichev A., “On the closure of polynomials in weighted spaces of functions on the real line”, Indiana Univ. Math. J., 50:2 (2001), 829–846 | DOI | MR | Zbl

[3] Casazza P., Christensen O., Li S., Lindner A., “Riesz–Fischer sequences and lower frame bounds”, Z. Anal. Anwend., 21:2 (2002), 305–314 | DOI | MR | Zbl

[4] Christensen O., An Introduction to Frames and Riesz Bases, Appl. Numer. Harmon. Anal., Birkhäuser, Boston, 2003, 440 pp. | DOI | MR

[5] Malliavin P., “Sur quelques procédés d’extrapolation”, Acta Math., 93 (1955), 179–255 | DOI | MR | Zbl

[6] Young R. M., An Introduction to Nonharmonic Fourier Series, Revised first, Academic Press, Inc., San Diego, CA, 2001, 234 pp. | MR | Zbl

[7] Zikkos E., “Completeness of an exponential system in weighted Banach spaces and closure of its linear span”, J. Approx. Theory, 146:1 (2007), 115–148 | DOI | MR | Zbl

[8] Zikkos E., “The closed span of some exponential system in weighted Banach spaces on the real line and a moment problem”, Analysis Math., 44:4 (2018), 605–630 | DOI | MR | Zbl