Domination and edge domination in trees
Ural mathematical journal, Tome 6 (2020) no. 1, pp. 147-152 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $G=(V,E)$ be a simple graph. A set $S\subseteq V$ is a dominating set if every vertex in $V \setminus S$ is adjacent to a vertex in $S$. The domination number of a graph $G$, denoted by $\gamma(G)$ is the minimum cardinality of a dominating set of $G$. A set $D \subseteq E$ is an edge dominating set if every edge in $E\setminus D$ is adjacent to an edge in $D$. The edge domination number of a graph $G$, denoted by $\gamma'(G)$ is the minimum cardinality of an edge dominating set of $G$. We characterize trees with domination number equal to twice edge domination number.
Keywords: Edge dominating set, Dominating set, Trees.
@article{UMJ_2020_6_1_a11,
     author = {B. Senthilkumar and Ya. B. Venkatakrishnan and N. Kumar},
     title = {Domination and edge domination in trees},
     journal = {Ural mathematical journal},
     pages = {147--152},
     year = {2020},
     volume = {6},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2020_6_1_a11/}
}
TY  - JOUR
AU  - B. Senthilkumar
AU  - Ya. B. Venkatakrishnan
AU  - N. Kumar
TI  - Domination and edge domination in trees
JO  - Ural mathematical journal
PY  - 2020
SP  - 147
EP  - 152
VL  - 6
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UMJ_2020_6_1_a11/
LA  - en
ID  - UMJ_2020_6_1_a11
ER  - 
%0 Journal Article
%A B. Senthilkumar
%A Ya. B. Venkatakrishnan
%A N. Kumar
%T Domination and edge domination in trees
%J Ural mathematical journal
%D 2020
%P 147-152
%V 6
%N 1
%U http://geodesic.mathdoc.fr/item/UMJ_2020_6_1_a11/
%G en
%F UMJ_2020_6_1_a11
B. Senthilkumar; Ya. B. Venkatakrishnan; N. Kumar. Domination and edge domination in trees. Ural mathematical journal, Tome 6 (2020) no. 1, pp. 147-152. http://geodesic.mathdoc.fr/item/UMJ_2020_6_1_a11/

[1] Arumugam S., Velammal S., “Edge domination in graphs”, Taiwanese J. Math., 2:2 (1998), 173–179 https://www.jstor.org/stable/43834391 | DOI | MR | Zbl

[2] Haynes T. W., Hedetniemi S. T., Slater P. J., Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998, 455 pp. | MR | Zbl

[3] Haynes T. W., Hedetniemi S. T., Slater P. J., Domination in Graphs: Advanced Topics, Marcel Dekker, New York, 1998, 497 pp. | MR | Zbl

[4] Krishnakumari B., Venkatakrishnan Y. B., Krzywkowski M., “On trees with total domination number equal to edge-vertex domination number plus one”, Proc. Math. Sci., 126 (2016), 153–157 | DOI | MR | Zbl

[5] Liu C. L., Introduction to Combinatorial Mathematics, McGraw Hill, New York, 1968, 393 pp. | MR | Zbl

[6] Dorfling M., Goddard W., Henning M. A., Mynhardt C. M., “Construction of trees and graphs with equal dominating parameters”, Discrete Math., 306:21 (2006), 2647–2654 | DOI | MR | Zbl

[7] Meddah N., Chellali M., “Edges contained in all or in no minimum edge dominating set of a tree”, Discrete Math. Algorithms Appl., 11:4 (2019), 1950040 | DOI | MR | Zbl

[8] Venkatakrishnan Y. B., Krishnakumari B., “An improved upper bound of edge-vertex domination number of a tree”, Inform. Process. Lett., 134 (2018), 14–17 | DOI | MR | Zbl