Domination and edge domination in trees
Ural mathematical journal, Tome 6 (2020) no. 1, pp. 147-152
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $G=(V,E)$ be a simple graph. A set $S\subseteq V$ is a dominating set if every vertex in $V \setminus S$ is adjacent to a vertex in $S$. The domination number of a graph $G$, denoted by $\gamma(G)$ is the minimum cardinality of a dominating set of $G$. A set $D \subseteq E$ is an edge dominating set if every edge in $E\setminus D$ is adjacent to an edge in $D$. The edge domination number of a graph $G$, denoted by $\gamma'(G)$ is the minimum cardinality of an edge dominating set of $G$. We characterize trees with domination number equal to twice edge domination number.
Keywords:
Edge dominating set, Dominating set, Trees.
@article{UMJ_2020_6_1_a11,
author = {B. Senthilkumar and Ya. B. Venkatakrishnan and N. Kumar},
title = {Domination and edge domination in trees},
journal = {Ural mathematical journal},
pages = {147--152},
publisher = {mathdoc},
volume = {6},
number = {1},
year = {2020},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UMJ_2020_6_1_a11/}
}
B. Senthilkumar; Ya. B. Venkatakrishnan; N. Kumar. Domination and edge domination in trees. Ural mathematical journal, Tome 6 (2020) no. 1, pp. 147-152. http://geodesic.mathdoc.fr/item/UMJ_2020_6_1_a11/