@article{UMJ_2020_6_1_a11,
author = {B. Senthilkumar and Ya. B. Venkatakrishnan and N. Kumar},
title = {Domination and edge domination in trees},
journal = {Ural mathematical journal},
pages = {147--152},
year = {2020},
volume = {6},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UMJ_2020_6_1_a11/}
}
B. Senthilkumar; Ya. B. Venkatakrishnan; N. Kumar. Domination and edge domination in trees. Ural mathematical journal, Tome 6 (2020) no. 1, pp. 147-152. http://geodesic.mathdoc.fr/item/UMJ_2020_6_1_a11/
[1] Arumugam S., Velammal S., “Edge domination in graphs”, Taiwanese J. Math., 2:2 (1998), 173–179 https://www.jstor.org/stable/43834391 | DOI | MR | Zbl
[2] Haynes T. W., Hedetniemi S. T., Slater P. J., Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998, 455 pp. | MR | Zbl
[3] Haynes T. W., Hedetniemi S. T., Slater P. J., Domination in Graphs: Advanced Topics, Marcel Dekker, New York, 1998, 497 pp. | MR | Zbl
[4] Krishnakumari B., Venkatakrishnan Y. B., Krzywkowski M., “On trees with total domination number equal to edge-vertex domination number plus one”, Proc. Math. Sci., 126 (2016), 153–157 | DOI | MR | Zbl
[5] Liu C. L., Introduction to Combinatorial Mathematics, McGraw Hill, New York, 1968, 393 pp. | MR | Zbl
[6] Dorfling M., Goddard W., Henning M. A., Mynhardt C. M., “Construction of trees and graphs with equal dominating parameters”, Discrete Math., 306:21 (2006), 2647–2654 | DOI | MR | Zbl
[7] Meddah N., Chellali M., “Edges contained in all or in no minimum edge dominating set of a tree”, Discrete Math. Algorithms Appl., 11:4 (2019), 1950040 | DOI | MR | Zbl
[8] Venkatakrishnan Y. B., Krishnakumari B., “An improved upper bound of edge-vertex domination number of a tree”, Inform. Process. Lett., 134 (2018), 14–17 | DOI | MR | Zbl