On generalized eighth order mock theta functions
Ural mathematical journal, Tome 6 (2020) no. 1, pp. 137-146

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we have generalized eighth order mock theta functions, recently introduced by Gordon and MacIntosh involving four independent variables. The idea of generalizing was to have four extra parameters, which on specializing give known functions and thus these results hold for those known functions. We have represented these generalized functions as $q$-integral. Thus on specializing we have the classical mock theta functions represented as $q$-integral. The same is true for the multibasic expansion given.
Keywords: $q$-Hypergeometric series, Mock theta functions, Continued fractions, $q$-Integrals.
@article{UMJ_2020_6_1_a10,
     author = {Pramod Kumar Rawat},
     title = {On generalized eighth order mock theta functions},
     journal = {Ural mathematical journal},
     pages = {137--146},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2020_6_1_a10/}
}
TY  - JOUR
AU  - Pramod Kumar Rawat
TI  - On generalized eighth order mock theta functions
JO  - Ural mathematical journal
PY  - 2020
SP  - 137
EP  - 146
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UMJ_2020_6_1_a10/
LA  - en
ID  - UMJ_2020_6_1_a10
ER  - 
%0 Journal Article
%A Pramod Kumar Rawat
%T On generalized eighth order mock theta functions
%J Ural mathematical journal
%D 2020
%P 137-146
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UMJ_2020_6_1_a10/
%G en
%F UMJ_2020_6_1_a10
Pramod Kumar Rawat. On generalized eighth order mock theta functions. Ural mathematical journal, Tome 6 (2020) no. 1, pp. 137-146. http://geodesic.mathdoc.fr/item/UMJ_2020_6_1_a10/