@article{UMJ_2020_6_1_a10,
author = {Pramod Kumar Rawat},
title = {On generalized eighth order mock theta functions},
journal = {Ural mathematical journal},
pages = {137--146},
year = {2020},
volume = {6},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UMJ_2020_6_1_a10/}
}
Pramod Kumar Rawat. On generalized eighth order mock theta functions. Ural mathematical journal, Tome 6 (2020) no. 1, pp. 137-146. http://geodesic.mathdoc.fr/item/UMJ_2020_6_1_a10/
[1] Andrews G. E., “On basic hypergeometric series, mock theta functions and partitions (I)”, Q. J. Math., 17:2 (1966), 64–80 | DOI | MR | Zbl
[2] Andrews G. E., Berndt B. C., Ramanujan’s Lost Notebook, v. I, Springer-Verlag, New York, 2005, 437 pp. | DOI | MR
[3] Andrews G. E., Hickerson D., “Ramanujan’s “lost” notebook VII: The sixth order mock theta functions”, Adv. Math., 89:1 (1991), 60–105 | DOI | MR | Zbl
[4] Choi Y.-S., “The basic bilateral hypergeometric series and the mock theta functions”, Ramanujan J., 24 (2011), 345–386 | DOI | MR | Zbl
[5] Srinivasa Ramanujan, Collected Papers of Srinivasa Ramanujan, eds. Hardy G. H., Seshu Aiyar P. V., Wilson B. M., Chelsea Pub. Co., New York, 1962, 355 pp. | MR
[6] Gasper G., Rahman M., Basic Hypergeometric Series, Cambridge University Press, Cambridge, 1990, 276 pp. | MR | Zbl
[7] Gordon B., Macintosh R. J., “Some eighth order mock theta functions”, J. London Math. Soc., 62:2 (2000), 321–335 | DOI | MR | Zbl
[8] Jackson F. H., “Basic Integration”, Q. J. Math., 2:1 (1951), 1–16 | DOI | MR | Zbl
[9] Rainville E. D., Special Function, Chelsea Pub. Co., New York, 1960, 365 pp. | MR
[10] Sills A. V., An Invitation to the Rogers-Ramanujan Identities, Chapman and Hall/CRC, New York, 2017, 256 pp. | DOI | MR
[11] Srivastava B., “A generalization of the eighth order mock theta functions and their multibasic expansion”, Saitama Math. J., 24 (2006/2007), 1–13 | MR
[12] Watson G. N., “The final problem: An account of the mock theta functions”, J. London Math. Soc., 11 (1936), 55–80 | DOI | MR