Estimates of best approximations of functions with logarithmic smoothness in the Lorentz space with anisotropic norm
Ural mathematical journal, Tome 6 (2020) no. 1, pp. 16-29 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we consider the anisotropic Lorentz space $L_{\bar{p}, \bar\theta}^{*}(\mathbb{I}^{m})$ of periodic functions of $m$ variables. The Besov space $B_{\bar{p}, \bar\theta}^{(0, \alpha, \tau)}$ of functions with logarithmic smoothness is defined. The aim of the paper is to find an exact order of the best approximation of functions from the class $B_{\bar{p}, \bar\theta}^{(0, \alpha, \tau)}$ by trigonometric polynomials under different relations between the parameters $\bar{p}, \bar\theta,$ and $\tau$. The paper consists of an introduction and two sections. In the first section, we establish a sufficient condition for a function $f\in L_{\bar{p}, \bar\theta^{(1)}}^{*}(\mathbb{I}^{m})$ to belong to the space $L_{\bar{p}, \theta^{(2)}}^{*}(\mathbb{I}^{m})$ in the case $1{\theta^{2}\theta_{j}^{(1)}},$ ${j=1,\ldots,m},$ in terms of the best approximation and prove its unimprovability on the class $E_{\bar{p},\bar{\theta}}^{\lambda}=\{f\in L_{\bar{p},\bar{\theta}}^{*}(\mathbb{I}^{m})\colon {E_{n}(f)_{\bar{p},\bar{\theta}}\leq\lambda_{n},}$ ${n=0,1,\ldots\},}$ where $E_{n}(f)_{\bar{p},\bar{\theta}}$ is the best approximation of the function $f \in L_{\bar{p},\bar{\theta}}^{*}(\mathbb{I}^{m})$ by trigonometric polynomials of order $n$ in each variable $x_{j},$ $j=1,\ldots,m,$ and $\lambda=\{\lambda_{n}\}$ is a sequence of positive numbers $\lambda_{n}\downarrow0$ as $n\to+\infty$. In the second section, we establish order-exact estimates for the best approximation of functions from the class $B_{\bar{p}, \bar\theta^{(1)}}^{(0, \alpha, \tau)}$ in the space $L_{\bar{p}, \theta^{(2)}}^{*}(\mathbb{I}^{m})$.
Keywords: Lorentz space, best approximation.
Mots-clés : Nikol'skii-Besov class
@article{UMJ_2020_6_1_a1,
     author = {Gabdolla Akishev},
     title = {Estimates of best approximations of functions with logarithmic smoothness in the {Lorentz} space with anisotropic norm},
     journal = {Ural mathematical journal},
     pages = {16--29},
     year = {2020},
     volume = {6},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2020_6_1_a1/}
}
TY  - JOUR
AU  - Gabdolla Akishev
TI  - Estimates of best approximations of functions with logarithmic smoothness in the Lorentz space with anisotropic norm
JO  - Ural mathematical journal
PY  - 2020
SP  - 16
EP  - 29
VL  - 6
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UMJ_2020_6_1_a1/
LA  - en
ID  - UMJ_2020_6_1_a1
ER  - 
%0 Journal Article
%A Gabdolla Akishev
%T Estimates of best approximations of functions with logarithmic smoothness in the Lorentz space with anisotropic norm
%J Ural mathematical journal
%D 2020
%P 16-29
%V 6
%N 1
%U http://geodesic.mathdoc.fr/item/UMJ_2020_6_1_a1/
%G en
%F UMJ_2020_6_1_a1
Gabdolla Akishev. Estimates of best approximations of functions with logarithmic smoothness in the Lorentz space with anisotropic norm. Ural mathematical journal, Tome 6 (2020) no. 1, pp. 16-29. http://geodesic.mathdoc.fr/item/UMJ_2020_6_1_a1/

[1] Akishev G. A., “On imbedding of some classes of functions of several variables into the Lorentz space”, Izv. Akad. Nauk Kaz. SSR, Ser. Fiz.-Mat., 1982, no. 3, 47–51 (in Russian) | MR | Zbl

[2] Akishev G., “The estimates of approximations classes in the Lorentz space”, AIP Conf. Proc., 1676:1 (2015), 1–4 | DOI | MR

[3] Akishev G., “An inequality of different metric for multivariate generalized polynomials”, East J. Approx., 12:1 (2006), 25–36 | MR

[4] Akishev G. A., “Estimates for best approximations of functions from the logarithmic smoothness class in the Lorentz space”, Trudy Inst. Mat. Mekh. UrO RAN., 23:3 (2017), 3–21 (in Russian) | DOI | MR

[5] Andrienko V. A., “The imbedding of certain classes of functions”, Math. USSR-Izv., 1:6 (1967), 1255–1270 | MR

[6] Bekmaganbetov K. A., “About order of approximation of Besov classes in metric of anisotropic Lorentz spaces”, Ufimsk. Mat. Zh, 1:2 (2009), 9–16 (in Russian) | Zbl

[7] Bekmaganbetov K. A., “Order of approximation of Besov classes in the metric of anisotropic Lorentz spaces”, Methods of Fourier Analysis and Approximation Theory, Appl. Numer. Harmon. Anal., eds. Ruzhansky M., Tikhonov S., Birkhäuser, Cham, 2016, 149–158. | DOI | MR

[8] Blozinski A. P., “Multivariate rearrangements and Banach function spaces with mixed norms”, Trans. Amer. Math. Soc., 263:1 (1981), 149–167 | DOI | MR | Zbl

[9] Cobos F., Domínguez Ó., “On Besov spaces of logarithmic smoothness and Lipschitz spaces”, J. Math Anal. Appl., 425:1 (2015), 71–84 | DOI | MR | Zbl

[10] Cobos F., Domínguez Ó., “Approximation spaces, limiting interpolation and Besov spaces”, J. Approx. Theory, 189 (2015), 43–66 | DOI | MR | Zbl

[11] DeVore R. A., Lorentz G. G, Constructive Approximation, limiting interpolation and Besov spaces, Grundlehren Math. Wiss, 33, Springer–Verlag, Berlin, Heidelberg, 1993, 453 pp. | DOI | MR

[12] Dinh Dũng, Temlyakov V. N., Ullrich T., Hyperbolic Cross Approximation, 2016, 154 pp., arXiv: 1601.03978v1 [math.NA] | MR

[13] Domínguez Ó., Tikhonov S., Function Spaces of Logarithmic Smoothness: Embeddings and Characterizations, 2018, 162 pp., arXiv: 1811.06399v2 [math.FA]

[14] Johansson H., “Embedding of $H_{p}^{\omega}$ in some Lorentz Spaces.”, Research Reports. Univ. Umeå,, 1975, no. 6, 26 | Zbl

[15] Kolyada V. I., “Imbedding theorems and inequalities in various metrics for best approximations”, Mat. Sb. (N.S.), 102:144 (1977), 195–215 (in Russian) | MR | Zbl

[16] Kolyada V. I., “Rearrangements of functions and embedding theorems”, Russian Math. Surveys, 44:5 (1989), 73–117 | DOI | MR | Zbl

[17] Nikol’ski S. M., “Priblizhenie funkcij mnogih peremennyh i teoremy vlozheniya [Approximation of Function of Several Variables and Imbedding Theorems]”, Dokl. Akad. Nauk RAN, 1977, 456, Moscow (in Russian)

[18] Nursultanov E. D., “Interpolation theorems for anisotropic function spaces and their applications”, Dokl. Akad. Nauk RAN, 394:1 (2004), 22–25 | MR | Zbl

[19] Nursultanov E. D., “Nikol’skii’s inequality for different metrics and properties of the sequence of norms of the Fourier sums of a function in the Lorentz space”, Proc. Steklov Inst. Math., 255 (2006), 185–202 | DOI | MR | Zbl

[20] Pietsch A., “Approximation spaces”, J. Approx. Theory, 32:2 (1981), 115–134 | DOI | MR | Zbl

[21] Romanyuk A. S., “Approximation of the isotropic classes $B_{p, \theta}^{r}$ of periodic functions of several variables in the space $L_{q}$.”, Zb. Pr. Inst. Mat. NAN Ukr., 5:1 (2008), 263–278 (in Russian) | MR | Zbl

[22] Sherstneva L. A., “On the properties of best Lorentz approximations, and certain embedding theorems”, Soviet Math. (Iz. VUZ), 31:10 (1987), 62–73 | MR | Zbl

[23] Smailov E. S., Akishev G., “Embedding theorems in the Lorentz space and their applications”, Izv. Akad. Nauk Kaz. SSR, Ser. Fiz.-Mat., 1984, no. 1, 66–70 (in Russian) | MR | Zbl

[24] Stasyuk S. A., “Approximating characteristics of the analogs of Besov classes with logarithmic smoothness”, Ukr. Math. J., 66:4 (2014), 553–560 | DOI | MR | Zbl

[25] Stasyuk S. A., “Kolmogorov widths for analog sof the Nikol’skii-Besov classes with logarithmic smoothness”, Ukr. Math. J., 67:11 (2015), 1786–1792 | DOI | MR

[26] Storozhenko E. A., “Embedding theorems and best approximations”, Math. USSR-Sb., 1975, 213–224 | DOI | MR

[27] Temirgaliev N., “Embedding in some Lorentz spaces”, Izv. Vyssh. Uchebn. Zaved. Mat., 1980, no. 6, 83–85 (in Russian) | MR | Zbl

[28] Temirgaliev N., “Embeddings of the classes $H_{p}^{\omega}$ in Lorentz spaces”, Sib. Math. J., 24:2 (1983), 287–298 | DOI | MR | Zbl

[29] Temlyakov V., Multivariate Approximation, Cambridge University Press., 2018, 551 pp. | DOI | MR | Zbl

[30] Ul'janov P. L., “The imbedding of certain function classes $H_{p}^{\omega}$.”, Math. USSR-Izv., 2:3 (1968), 601–637 | DOI