Estimates of best approximations of functions with logarithmic smoothness in the Lorentz space with anisotropic norm
Ural mathematical journal, Tome 6 (2020) no. 1, pp. 16-29
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we consider the anisotropic Lorentz space $L_{\bar{p}, \bar\theta}^{*}(\mathbb{I}^{m})$ of periodic functions of $m$ variables. The Besov space $B_{\bar{p}, \bar\theta}^{(0, \alpha, \tau)}$ of functions with logarithmic smoothness is defined. The aim of the paper is to find an exact order of the best approximation of functions from the class $B_{\bar{p}, \bar\theta}^{(0, \alpha, \tau)}$ by trigonometric polynomials under different relations between the parameters $\bar{p}, \bar\theta,$ and $\tau$.
The paper consists of an introduction and two sections. In the first section, we establish a sufficient condition for a function $f\in L_{\bar{p}, \bar\theta^{(1)}}^{*}(\mathbb{I}^{m})$ to belong to the space $L_{\bar{p}, \theta^{(2)}}^{*}(\mathbb{I}^{m})$ in the case $1{\theta^{2}\theta_{j}^{(1)}},$ ${j=1,\ldots,m},$ in terms of the best approximation and prove its unimprovability on the class $E_{\bar{p},\bar{\theta}}^{\lambda}=\{f\in L_{\bar{p},\bar{\theta}}^{*}(\mathbb{I}^{m})\colon
{E_{n}(f)_{\bar{p},\bar{\theta}}\leq\lambda_{n},}$ ${n=0,1,\ldots\},}$
where $E_{n}(f)_{\bar{p},\bar{\theta}}$ is the best approximation of the function $f \in L_{\bar{p},\bar{\theta}}^{*}(\mathbb{I}^{m})$ by trigonometric polynomials of order $n$ in each variable $x_{j},$ $j=1,\ldots,m,$ and $\lambda=\{\lambda_{n}\}$ is a sequence of positive numbers $\lambda_{n}\downarrow0$ as $n\to+\infty$.
In the second section, we establish order-exact estimates for the best approximation of functions from the class $B_{\bar{p}, \bar\theta^{(1)}}^{(0, \alpha, \tau)}$ in the space $L_{\bar{p}, \theta^{(2)}}^{*}(\mathbb{I}^{m})$.
Keywords:
Lorentz space, best approximation.
Mots-clés : Nikol'skii-Besov class
Mots-clés : Nikol'skii-Besov class
@article{UMJ_2020_6_1_a1,
author = {Gabdolla Akishev},
title = {Estimates of best approximations of functions with logarithmic smoothness in the {Lorentz} space with anisotropic norm},
journal = {Ural mathematical journal},
pages = {16--29},
publisher = {mathdoc},
volume = {6},
number = {1},
year = {2020},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UMJ_2020_6_1_a1/}
}
TY - JOUR AU - Gabdolla Akishev TI - Estimates of best approximations of functions with logarithmic smoothness in the Lorentz space with anisotropic norm JO - Ural mathematical journal PY - 2020 SP - 16 EP - 29 VL - 6 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UMJ_2020_6_1_a1/ LA - en ID - UMJ_2020_6_1_a1 ER -
%0 Journal Article %A Gabdolla Akishev %T Estimates of best approximations of functions with logarithmic smoothness in the Lorentz space with anisotropic norm %J Ural mathematical journal %D 2020 %P 16-29 %V 6 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/UMJ_2020_6_1_a1/ %G en %F UMJ_2020_6_1_a1
Gabdolla Akishev. Estimates of best approximations of functions with logarithmic smoothness in the Lorentz space with anisotropic norm. Ural mathematical journal, Tome 6 (2020) no. 1, pp. 16-29. http://geodesic.mathdoc.fr/item/UMJ_2020_6_1_a1/