Estimates of best approximations of functions with logarithmic smoothness in the Lorentz space with anisotropic norm
Ural mathematical journal, Tome 6 (2020) no. 1, pp. 16-29

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider the anisotropic Lorentz space $L_{\bar{p}, \bar\theta}^{*}(\mathbb{I}^{m})$ of periodic functions of $m$ variables. The Besov space $B_{\bar{p}, \bar\theta}^{(0, \alpha, \tau)}$ of functions with logarithmic smoothness is defined. The aim of the paper is to find an exact order of the best approximation of functions from the class $B_{\bar{p}, \bar\theta}^{(0, \alpha, \tau)}$ by trigonometric polynomials under different relations between the parameters $\bar{p}, \bar\theta,$ and $\tau$. The paper consists of an introduction and two sections. In the first section, we establish a sufficient condition for a function $f\in L_{\bar{p}, \bar\theta^{(1)}}^{*}(\mathbb{I}^{m})$ to belong to the space $L_{\bar{p}, \theta^{(2)}}^{*}(\mathbb{I}^{m})$ in the case $1{\theta^{2}\theta_{j}^{(1)}},$ ${j=1,\ldots,m},$ in terms of the best approximation and prove its unimprovability on the class $E_{\bar{p},\bar{\theta}}^{\lambda}=\{f\in L_{\bar{p},\bar{\theta}}^{*}(\mathbb{I}^{m})\colon {E_{n}(f)_{\bar{p},\bar{\theta}}\leq\lambda_{n},}$ ${n=0,1,\ldots\},}$ where $E_{n}(f)_{\bar{p},\bar{\theta}}$ is the best approximation of the function $f \in L_{\bar{p},\bar{\theta}}^{*}(\mathbb{I}^{m})$ by trigonometric polynomials of order $n$ in each variable $x_{j},$ $j=1,\ldots,m,$ and $\lambda=\{\lambda_{n}\}$ is a sequence of positive numbers $\lambda_{n}\downarrow0$ as $n\to+\infty$. In the second section, we establish order-exact estimates for the best approximation of functions from the class $B_{\bar{p}, \bar\theta^{(1)}}^{(0, \alpha, \tau)}$ in the space $L_{\bar{p}, \theta^{(2)}}^{*}(\mathbb{I}^{m})$.
Keywords: Lorentz space, best approximation.
Mots-clés : Nikol'skii-Besov class
@article{UMJ_2020_6_1_a1,
     author = {Gabdolla Akishev},
     title = {Estimates of best approximations of functions with logarithmic smoothness in the {Lorentz} space with anisotropic norm},
     journal = {Ural mathematical journal},
     pages = {16--29},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2020_6_1_a1/}
}
TY  - JOUR
AU  - Gabdolla Akishev
TI  - Estimates of best approximations of functions with logarithmic smoothness in the Lorentz space with anisotropic norm
JO  - Ural mathematical journal
PY  - 2020
SP  - 16
EP  - 29
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UMJ_2020_6_1_a1/
LA  - en
ID  - UMJ_2020_6_1_a1
ER  - 
%0 Journal Article
%A Gabdolla Akishev
%T Estimates of best approximations of functions with logarithmic smoothness in the Lorentz space with anisotropic norm
%J Ural mathematical journal
%D 2020
%P 16-29
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UMJ_2020_6_1_a1/
%G en
%F UMJ_2020_6_1_a1
Gabdolla Akishev. Estimates of best approximations of functions with logarithmic smoothness in the Lorentz space with anisotropic norm. Ural mathematical journal, Tome 6 (2020) no. 1, pp. 16-29. http://geodesic.mathdoc.fr/item/UMJ_2020_6_1_a1/