Four-dimensional brusselator model with periodical solution
Ural mathematical journal, Tome 6 (2020) no. 1, pp. 3-15 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the paper, a four-dimensional model of cyclic reactions of the type Prigogine's Brusselator is considered. It is shown that the corresponding dynamical system does not have a closed trajectory in the positive orthant that will make it inadequate with the main property of chemical reactions of Brusselator type. Therefore, a new modified Brusselator model is proposed in the form of a four-dimensional dynamic system. Also, the existence of a closed trajectory is proved by the DN-tracking method for a certain value of the parameter which expresses the rate of addition one of the reagents to the reaction from an external source.
Keywords: chemical reaction, closed trajectory, dN-tracking method, discrete trajectory, numerical trajectory.
@article{UMJ_2020_6_1_a0,
     author = {Odiljon S. Akhmedov and Abdulla A. Azamov and Gafurjan I. Ibragimov},
     title = {Four-dimensional brusselator model with periodical solution},
     journal = {Ural mathematical journal},
     pages = {3--15},
     year = {2020},
     volume = {6},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2020_6_1_a0/}
}
TY  - JOUR
AU  - Odiljon S. Akhmedov
AU  - Abdulla A. Azamov
AU  - Gafurjan I. Ibragimov
TI  - Four-dimensional brusselator model with periodical solution
JO  - Ural mathematical journal
PY  - 2020
SP  - 3
EP  - 15
VL  - 6
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UMJ_2020_6_1_a0/
LA  - en
ID  - UMJ_2020_6_1_a0
ER  - 
%0 Journal Article
%A Odiljon S. Akhmedov
%A Abdulla A. Azamov
%A Gafurjan I. Ibragimov
%T Four-dimensional brusselator model with periodical solution
%J Ural mathematical journal
%D 2020
%P 3-15
%V 6
%N 1
%U http://geodesic.mathdoc.fr/item/UMJ_2020_6_1_a0/
%G en
%F UMJ_2020_6_1_a0
Odiljon S. Akhmedov; Abdulla A. Azamov; Gafurjan I. Ibragimov. Four-dimensional brusselator model with periodical solution. Ural mathematical journal, Tome 6 (2020) no. 1, pp. 3-15. http://geodesic.mathdoc.fr/item/UMJ_2020_6_1_a0/

[1] Adomian G., “The diffusion Brusselator equation”, Comput. Math. Appl., 29:29 (1995), 1–3 | DOI | MR | Zbl

[2] Alqahtani A. M., “Numerical simulation to study the pattern formation of reaction–diffusion Brusselator model arising in triple collision and enzymatic”, J. Math. Chem., 56 (2018), 1543–1566 | DOI | MR | Zbl

[3] Azamov A. A., “DN-tracking method for proving the existence of limit cycles”, Abstr. of the Int. Conf. Differential Equations and Topology dedicated to the Centennial Anniversary of L.S. Pontryagin (Russia. Moscow: MSU, June 17–22, 2008), 2008, 87–88 (in Russian) | MR

[4] Azamov A. A., Ibragimov G., Akhmedov O. S., Ismail F., “On the proof of existence of a limit cycle for the Prigogine brusselator model”, J. Math. Res., 3:4 (2011), 983–989 | DOI

[5] Azamov A. A., Akhmedov O. S., “Existence of a complex closed trajectory in a three-dimensional dynamical system”, Comput. Math. Math. Phys., 51:8 (2011), 1353–1359 | DOI | MR | Zbl

[6] Azamov A. A., Akhmedov O. S., “On existence of a closed trajectory in a three-dimensional model of a Brusselator”, Mech. Solids, 54:2 (2019), 251–265 | DOI

[7] Bakhvalov N. S., CHislennye metody [Numerical methods], Mir, Moscow, 1977 (in Russian)

[8] Boldo S., Faissole F., Chapoutot A., “Round-off error analysis of explicit one-step numerical integration methods”, IEEE 24th Symposium on Computer Arithmetic (ARITH), July 24–26, 2017, London, UK, IEEE Xplore, 2017, 82–89 | DOI

[9] Butcher J. C., Numerical Methods for Ordinary Differential Equations, 3rd ed., John Wiley Sons Ltd., New York, 2016, 538 pp. | MR | Zbl

[10] Cartan H., Calcul Différentiel. Formes Differentielles, Hermann, Paris, 1967 | MR

[11] Elyukhina I., “Nonlinear stability analysis of the full Brusselator reaction-diffusion model.”, Theor. Found. Chem. Eng., 48:6 (2014), 806–812 | DOI

[12] Glansdorff P., Prigogine I., Thermodynamic Theory of Structure, Stability and Fluctuations, John Wiley Sons Ltd., New York, 1971 | MR | Zbl

[13] Guckenheimer J., “Dynamical systems theory for ecologists: a brief overview”, Ecological Time Series, Springer, Boston, MA, 1995, 54–69 | DOI

[14] Hairer E., Nõrsett S., Wanner G., Solving Ordinary Differential Equations I. Non-stiff Problems, Springer Ser. Comput. Math., 8, Springer–Verlag, Berlin, Heidelberg, 1993, 528 pp. | MR

[15] Holmes M. H., Introduction to Numerical Methods in Differential Equations, Texts Appl. Math., 52, Springer–Verlag, New York, 2007, 239 pp. | DOI | MR | Zbl

[16] Kehlet B., Logg A., “A posteriori error analysis of round-off errors in the numerical solution of ordinary differential equation”, Numer. Algorithms, 76:48 (2017), 191–210 | DOI | MR | Zbl

[17] Li Y., “Hopf bifurcations in general systems of Brusselator type”, Nonlinear Anal. Real World Appl., 28 (2016), 32–47 | DOI | MR | Zbl

[18] Ma M., Hu J., “Bifurcation and stability analysis of steady states to a Brusselator model”, Appl. Math. Comput., 236 (2014), 580–592 | DOI | MR | Zbl

[19] Ma S. J., “The stochastic Hopf bifurcation analysis in Brusselator system with random parameter”, Appl. Math. Comput., 219 (2012), 306–319 | DOI | MR | Zbl

[20] Nicolis G., Prigogine I., Self-Organization in Nonequilibrium Systems, John Wiley Sons Ltd., New York, 1977, 491 pp. | MR | Zbl

[21] Nikol’skii M. S., Pervyj pryamoj metod L.S. Pontryagina v differencial’nyh igrah [Pontryagin’s First Direct Method for Differential Games], Moscow State Univ., Moscow, 1984, 65 pp. (in Russian) | MR

[22] Peña B., Pérez-García C., “Stability of Turing patterns in the Brusselator model”, Phys. Rev. E, 64 (2001), 156–213 | DOI | MR

[23] Pontryagin L. S., Foundations of Combinatorial Topology, Graylock press, Rochester, New York, 1952, 99 pp. | MR | Zbl

[24] Prigogine I., Lefever R., “Symmetry breaking instabilities in dissipative systems II”, J. Chem. Phys., 48:4 (1968), 1695–1700 | DOI

[25] Prigogine I., From Being to Becoming: Time and Complexity in the Physical Sciences, W.H. Freeman Co. Ltd, New York, San Francisco, 1980, 272 pp.

[26] Rubido N., Stochastic dynamics and the noisy Brusselator behaviour, 2014, 7 pp., arXiv: 1405.0390 [cond-mat.stat-mech]

[27] Tucker W., “A rigorous ODE solver and Smale’s 14th problem”, Found. Comput. Math., 2 (2002), 53–117 | DOI | MR | Zbl

[28] Twizell E. H., Gumel A. B., Cao Q., “A second-order scheme for the “Brusselator” reaction–diffusion system”, J. Math. Chem., 26 (1999), 297–316 | DOI | MR

[29] Tyson J. J., “Some further studies of nonlinear oscillations in chemical systems”, J. Chem. Phys., 58 (1973), 3919–3930 | DOI

[30] Tzou J. C., Ward M. J., “The stability and slow dynamics of spot patterns in the 2D Brusselator model: The effect of open systems and heterogeneities”, Phys. D: Nonlinear Phenomena, 373 (2018), 13–37 | DOI | MR | Zbl

[31] You Y., “Global dynamics of the Brusselator equations”, Dyn. Partial Differ. Equ., 4:2 (2007), 167–196 | DOI | MR | Zbl

[32] You Y., Zhou Sh., “Global dissipative dynamics of the extended Brusselator system”, Nonlinear Anal. Real World Appl., 13:6 (2012), 2767–2789 | DOI | MR | Zbl

[33] Yu P., Gumel A. B., “Bifurcation and stability analysis for a coupled Brusselator model”, J. Sound and Vibration, 244:5 (2001), 795–820 | DOI | MR | Zbl

[34] Zhao Z., Ma R., “Local and global bifurcation of steady states to a general Brusselator model”, Adv. Differ. Equ., 2019, no. 491, 1–14 | DOI | MR