@article{UMJ_2019_5_2_a6,
author = {Dmitriy A. Serkov},
title = {On a dynamic game problem with an indecomposable set of disturbances},
journal = {Ural mathematical journal},
pages = {72--79},
year = {2019},
volume = {5},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UMJ_2019_5_2_a6/}
}
Dmitriy A. Serkov. On a dynamic game problem with an indecomposable set of disturbances. Ural mathematical journal, Tome 5 (2019) no. 2, pp. 72-79. http://geodesic.mathdoc.fr/item/UMJ_2019_5_2_a6/
[1] Chentsov A. G., “On a game problem of converging at a given instant of time”, Math. USSR-Sb., 28:3 (1976), 353–376 | DOI | MR
[2] Chentsov A. G., “On a game problem of guidance with information memory”, Dokl. Akad. Nauk SSSR, 227:2 (1976), 306–309 (in Russian) | MR
[3] Engelking R., General Topology, Sigma Ser. Pure Math., 6, Panstwowe Wydawnictwo Naukowe, Warszawa, 1985, 540 pp.
[4] Gomoyunov M. I., Serkov D., “Control with a guide in the guarantee optimization problem under functional constraints on the disturbance”, Proc. Steklov Inst. Math., 299, Suppl. 1 (2017), S49–S60 | DOI | MR | Zbl
[5] Krasovskii N. N., Subbotin A. I., Game-Theoretical Control Problems, Springer-Verlag, New York, 1988, 517 pp. | MR | Zbl
[6] Ledyaev Y. S., “Program-predictive feedback control for systems with evolving dynamics”, IFAC-PapersOnLine, 51:32 (2018), 723—726 | DOI
[7] Rockafellar R. T., “Integrals which are convex functionals”, Pacific J. Math., 24:3, 525–539 | DOI | MR | Zbl
[8] Serkov D. A., “Transfinite sequences in the programmed iteration method.”, Proc. Steklov Inst. Math., 300, Suppl. 1, S153–S164 | DOI | MR | Zbl
[9] Serkov D. A., Chentsov A. G., “The elements of the operator convexity in the construction of the programmed iteration method”, Bull. South Ural State Univ. Ser. Math. Modell. Program. Comp. Software, 9:3 (2016), 82–93 | DOI | MR | Zbl