Order of the Runge-Kutta method and evolution of the stability region
Ural mathematical journal, Tome 5 (2019) no. 2, pp. 64-71
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this article, we demonstrate through specific examples that the evolution of the size of the absolute stability regions of Runge–Kutta methods for ordinary differential equation does not depend on the order of methods.
Keywords: stability region, Runge-Kutta methods, ordinary differential equations, order of methods.
@article{UMJ_2019_5_2_a5,
     author = {Hippolyte S\'eka and Kouassi Richard Assui},
     title = {Order of the {Runge-Kutta} method and evolution of the stability region},
     journal = {Ural mathematical journal},
     pages = {64--71},
     year = {2019},
     volume = {5},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2019_5_2_a5/}
}
TY  - JOUR
AU  - Hippolyte Séka
AU  - Kouassi Richard Assui
TI  - Order of the Runge-Kutta method and evolution of the stability region
JO  - Ural mathematical journal
PY  - 2019
SP  - 64
EP  - 71
VL  - 5
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UMJ_2019_5_2_a5/
LA  - en
ID  - UMJ_2019_5_2_a5
ER  - 
%0 Journal Article
%A Hippolyte Séka
%A Kouassi Richard Assui
%T Order of the Runge-Kutta method and evolution of the stability region
%J Ural mathematical journal
%D 2019
%P 64-71
%V 5
%N 2
%U http://geodesic.mathdoc.fr/item/UMJ_2019_5_2_a5/
%G en
%F UMJ_2019_5_2_a5
Hippolyte Séka; Kouassi Richard Assui. Order of the Runge-Kutta method and evolution of the stability region. Ural mathematical journal, Tome 5 (2019) no. 2, pp. 64-71. http://geodesic.mathdoc.fr/item/UMJ_2019_5_2_a5/

[1] Butcher J.-C., Numerical Methods for Ordinary Differential Equations, 2nd ed., John Wiley Sons Ltd., 2008, 175 pp. | DOI | MR | Zbl

[2] Calvo M., Montijano J. I., Randez L., “A new embedded pair of Runge–Kutta formulas of orders $5$ and $6$”, Comput. Math. Appl., 20:1 (1990), 15–24 | DOI | MR | Zbl

[3] Cassity C. R., “The complete solution of the fifth order Runge–Kutta equations”, SIAM J. Numer. Anal., 6:3 (1969), 432–436 | DOI | MR | Zbl

[4] Feagin T., “A tenth-order Runge–Kutta method with error estimate”, Proc. of the IAENG Conf. on Scientific Computing, Hong Kong, 2007 https://sce.uhcl.edu/feagin/courses/rk10.pdf

[5] Feagin T., High-Order Explicit Runge-Kutta Methods, 2013 http://sce.uhcl.edu/rungekutta

[6] Hairer E., Nørsett S. P., Wanner G., Solving Ordinary Differential Equations I. Nonstiff Problems, Springer Ser. Comput. Math., 8, Springer–Verlag, Berlin–Heidelberg, 1993, 528 pp. | DOI | MR | Zbl

[7] Houben S., Stability Regions of Runge–Kutta Methods, Eindhoven University of Technology, 2002 https://www.win.tue.nl/casa/meetings/seminar/previous/_abstract020220_files/talk.pd

[8] Jackiewicz Z., General Linear Methods for Ordinary Differential Equations, John Wiley Sons Inc., 2009, 482 pp. | DOI | MR | Zbl

[9] Khashin S. I., List of Some Known Runge-Kutta Methods Family, Preliminary version, 2013 http://math.ivanovo.ac.ru/dalgebra/Khashin/rk/sh_rk.html | MR

[10] Kashin S. I., “Estimating the error in classical Runge–Kutta methods”, Comput. Math. Math. Phys., 54:5 (2014), 767–774 | DOI | MR

[11] Liu M. Z., Song M. H., Yang Z. W., “Stability of Runge–Kutta methods in the numerical solution of equation $u'(t)=au(t)+a_{0}u([t])$”, J. Comput. Appl. Math., 166:2 (2004), 361–370 | DOI | MR | Zbl

[12] Seka H., Assui K. R., “A New Eighth Order Runge-Kutta Family Method”, J. Math. Res., 11:2 (2019), 190–199 | DOI

[13] Velagala S. R., Stability Analysis of the 4th order Runge–Kutta Method in Application to Colloidal Particle Interactions, Master's thesis, University of Illinois, Urbana-Champaign, USA, 2014 http://hdl.handle.net/2142/72750