@article{UMJ_2019_5_2_a5,
author = {Hippolyte S\'eka and Kouassi Richard Assui},
title = {Order of the {Runge-Kutta} method and evolution of the stability region},
journal = {Ural mathematical journal},
pages = {64--71},
year = {2019},
volume = {5},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UMJ_2019_5_2_a5/}
}
Hippolyte Séka; Kouassi Richard Assui. Order of the Runge-Kutta method and evolution of the stability region. Ural mathematical journal, Tome 5 (2019) no. 2, pp. 64-71. http://geodesic.mathdoc.fr/item/UMJ_2019_5_2_a5/
[1] Butcher J.-C., Numerical Methods for Ordinary Differential Equations, 2nd ed., John Wiley Sons Ltd., 2008, 175 pp. | DOI | MR | Zbl
[2] Calvo M., Montijano J. I., Randez L., “A new embedded pair of Runge–Kutta formulas of orders $5$ and $6$”, Comput. Math. Appl., 20:1 (1990), 15–24 | DOI | MR | Zbl
[3] Cassity C. R., “The complete solution of the fifth order Runge–Kutta equations”, SIAM J. Numer. Anal., 6:3 (1969), 432–436 | DOI | MR | Zbl
[4] Feagin T., “A tenth-order Runge–Kutta method with error estimate”, Proc. of the IAENG Conf. on Scientific Computing, Hong Kong, 2007 https://sce.uhcl.edu/feagin/courses/rk10.pdf
[5] Feagin T., High-Order Explicit Runge-Kutta Methods, 2013 http://sce.uhcl.edu/rungekutta
[6] Hairer E., Nørsett S. P., Wanner G., Solving Ordinary Differential Equations I. Nonstiff Problems, Springer Ser. Comput. Math., 8, Springer–Verlag, Berlin–Heidelberg, 1993, 528 pp. | DOI | MR | Zbl
[7] Houben S., Stability Regions of Runge–Kutta Methods, Eindhoven University of Technology, 2002 https://www.win.tue.nl/casa/meetings/seminar/previous/_abstract020220_files/talk.pd
[8] Jackiewicz Z., General Linear Methods for Ordinary Differential Equations, John Wiley Sons Inc., 2009, 482 pp. | DOI | MR | Zbl
[9] Khashin S. I., List of Some Known Runge-Kutta Methods Family, Preliminary version, 2013 http://math.ivanovo.ac.ru/dalgebra/Khashin/rk/sh_rk.html | MR
[10] Kashin S. I., “Estimating the error in classical Runge–Kutta methods”, Comput. Math. Math. Phys., 54:5 (2014), 767–774 | DOI | MR
[11] Liu M. Z., Song M. H., Yang Z. W., “Stability of Runge–Kutta methods in the numerical solution of equation $u'(t)=au(t)+a_{0}u([t])$”, J. Comput. Appl. Math., 166:2 (2004), 361–370 | DOI | MR | Zbl
[12] Seka H., Assui K. R., “A New Eighth Order Runge-Kutta Family Method”, J. Math. Res., 11:2 (2019), 190–199 | DOI
[13] Velagala S. R., Stability Analysis of the 4th order Runge–Kutta Method in Application to Colloidal Particle Interactions, Master's thesis, University of Illinois, Urbana-Champaign, USA, 2014 http://hdl.handle.net/2142/72750