Mots-clés : Inertia group
@article{UMJ_2019_5_2_a3,
author = {Akram Lbekkouri},
title = {Local extensions with imperfect residue field},
journal = {Ural mathematical journal},
pages = {31--54},
year = {2019},
volume = {5},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UMJ_2019_5_2_a3/}
}
Akram Lbekkouri. Local extensions with imperfect residue field. Ural mathematical journal, Tome 5 (2019) no. 2, pp. 31-54. http://geodesic.mathdoc.fr/item/UMJ_2019_5_2_a3/
[1] Abbes A., Saito T., “Ramification of local fields with imperfect residue fields”, Amer. J. Math., 124:5 (2002), 879–920 | DOI | MR | Zbl
[2] Abrashkin V. A., Towards Explicit Description of Ramification Filtration in the 2-dimensional Case, Preprint of Nottingham Univ., No. 00-01, 2000 | MR | Zbl
[3] Borger J., “A monogenic Hasse–Arf Theorem”, Proc. of the Conf. on Ramification Theory for Arithmetic Schemes, Luminy, 1999
[4] Bosch S., Lütkebohmert W., Raynaud M., Néron Models, Ergeb. Math. Grenzgeb. (3), 21, Springer–Verlag, Berlin, Heidelberg, 1990, 328 pp. | DOI | MR
[5] Engler A.J., Prestel A., Valued Fields, Springer Monogr. Math., Springer—Verlag, Berlin, Heidelberg, 2005, 208 pp. | DOI | MR | Zbl
[6] Epp H. P., “Eliminating wild ramification”, Invent Math., 19 (1973), 235–249 | DOI | MR | Zbl
[7] Gold R., Madan M.L., “Some applications of Abhyankar's Lemma”, Math. Nachr., 82:1 (1978), 115–119 | DOI | MR | Zbl
[8] Jonah D., Konvisser M., “Some nonabelian $ p$-groups with abelian automorphism groups”, Arch. Math., 2:1 (1975), 131—133 | DOI | MR
[9] Koenigsmann J., “Solvable absolute Galois groups are metabelian”, Invent. Math., 144 (2001), 1–22 | DOI | MR | Zbl
[10] Kuhlmann F. V., A Correction to Epp's paper “Elimination of Wild Ramification”, 2010, arXiv: 1003.5687v1 [math.AC] | MR
[11] Lbekkouri A., “On the solvability in local extensions”, An. Şt. Univ. Ovidius Constanţa, 22:2 (2014), 121–127 | DOI | MR | Zbl
[12] Neukirch J., Shmidt A., Wingberg K., Cohomology of Number Fields, Grundlehren Math. Wiss., 323, Springer—Verlag, Berlin, 2000, 720 pp. | MR | Zbl
[13] Neukirch J., Algebraic Number Theory, Springer—Verlag, Berlin–Heidelberg, 1999, 322 pp. | DOI | MR
[14] Ribes L., Zalesskii P., Profinite Groups, Ergeb. Math. Grenzgeb. (3), 40, Springer—Verlag, Berlin–Heidelberg, 2000, 483 pp. | DOI | MR | Zbl
[15] Safarevic̆ I.R., “On p-extensions”, Amer. Math. Soc. Transl. Ser. 2, 4 (1954), 59–72
[16] Saito T., “Ramification of local fields with imperfect residue fields III”, Math. Ann., 352 (2012), 567–580 | DOI | MR | Zbl
[17] Saito T., “Wild ramification and the characteristic cycle of an $l$-adic sheaf”, J. Inst. Math. Jussieu, 8:4 (2008), 769–829 | DOI | MR
[18] Serre J.-P., Local Fields, Grad. Texts in Math., 67, Springer–Verlag, New York, 1979, 241 pp. | DOI | MR | Zbl
[19] Serre J.-P., Cohomologie Galoisienne, Lecture Notes in Math., 5, Springer—Verlag, Berlin–Heidelberg, 181 pp. | DOI | MR
[20] Spriano L., “Well ramified extensions of complete discrete valuation fields with application to the Kato Conductor”, Canad. J. Math., 52:6 (2000), 1269—1309 | DOI | MR | Zbl
[21] Spriano L., “On ramification theory of monogenic extensions”, Geom. Topol. Monogr., Part I, Sect. 18, v. 3, Invitation to Higher Local Fields, eds. I. Fesenko and M. Kurihara, 2000, 151–164. | DOI | MR | Zbl
[22] Ware R., “On Galois groups of maximal $ p$-extension”, Trans. Amer. Math. Soc., 333:2 (1992), 721–728 | DOI | MR | Zbl
[23] Xiao L., “On ramification filtrations and $p$-adic differential modules, I: the equal characteristic case”, Algebra Number Theory, 4:8 (2010), 969–1027 | DOI | MR | Zbl
[24] Xiao L., “On ramification filtrations and $p$-adic differential equations, II: mixed characteristic case”, Compos. Math., 148:2 (2012), 415—463 | DOI | MR | Zbl
[25] Zariski O., Samuel P., Commutative Algebra I, Grad. Texts in Math., 28, Springer—Verlag, New York, 1975, 334 pp. | MR | Zbl
[26] Zhukov I.B., On Ramification Theory in the Imperfect Residue Field Case, Prepint No. 98-02, Nottingham Univ., 1998, arXiv: math/0201238 [math.NT] | MR
[27] Zhukov I.B., Ramification of Surfaces Artin-Schreier Extensions, 2002, arXiv: math/0209183 [math.AG] | MR
[28] Zhukov I.B., Ramification of Surfaces: Sufficient Jet Order for Wild Jumps, 2002, arXiv: math/0201071 [math.AG]