Local extensions with imperfect residue field
Ural mathematical journal, Tome 5 (2019) no. 2, pp. 31-54 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper deals with some aspects of general local fields and tries to elucidate some obscure facts. Indeed, several questions remain open, in this domain of research, and literature is getting scarce. Broadly speaking, we present a full description of the absolute Galois group in all cases with answers on the solvability, prosolvability and procyclicity. Furthermore, we give a result that makes “some” generalization to Abhyankar’s Lemma in local case. Half-way a short section, containing a view of some future research loosely discussed, presents an attempt in the development of the theory. An Annexe elucidate several important points, concerning Hilbert’s theory.
Keywords: Abhyankar’s Lemma, Imperfect residue field, Weakly unramified, Solvability, Monogenity.
Mots-clés : Inertia group
@article{UMJ_2019_5_2_a3,
     author = {Akram Lbekkouri},
     title = {Local extensions with imperfect residue field},
     journal = {Ural mathematical journal},
     pages = {31--54},
     year = {2019},
     volume = {5},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2019_5_2_a3/}
}
TY  - JOUR
AU  - Akram Lbekkouri
TI  - Local extensions with imperfect residue field
JO  - Ural mathematical journal
PY  - 2019
SP  - 31
EP  - 54
VL  - 5
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UMJ_2019_5_2_a3/
LA  - en
ID  - UMJ_2019_5_2_a3
ER  - 
%0 Journal Article
%A Akram Lbekkouri
%T Local extensions with imperfect residue field
%J Ural mathematical journal
%D 2019
%P 31-54
%V 5
%N 2
%U http://geodesic.mathdoc.fr/item/UMJ_2019_5_2_a3/
%G en
%F UMJ_2019_5_2_a3
Akram Lbekkouri. Local extensions with imperfect residue field. Ural mathematical journal, Tome 5 (2019) no. 2, pp. 31-54. http://geodesic.mathdoc.fr/item/UMJ_2019_5_2_a3/

[1] Abbes A., Saito T., “Ramification of local fields with imperfect residue fields”, Amer. J. Math., 124:5 (2002), 879–920 | DOI | MR | Zbl

[2] Abrashkin V. A., Towards Explicit Description of Ramification Filtration in the 2-dimensional Case, Preprint of Nottingham Univ., No. 00-01, 2000 | MR | Zbl

[3] Borger J., “A monogenic Hasse–Arf Theorem”, Proc. of the Conf. on Ramification Theory for Arithmetic Schemes, Luminy, 1999

[4] Bosch S., Lütkebohmert W., Raynaud M., Néron Models, Ergeb. Math. Grenzgeb. (3), 21, Springer–Verlag, Berlin, Heidelberg, 1990, 328 pp. | DOI | MR

[5] Engler A.J., Prestel A., Valued Fields, Springer Monogr. Math., Springer—Verlag, Berlin, Heidelberg, 2005, 208 pp. | DOI | MR | Zbl

[6] Epp H. P., “Eliminating wild ramification”, Invent Math., 19 (1973), 235–249 | DOI | MR | Zbl

[7] Gold R., Madan M.L., “Some applications of Abhyankar's Lemma”, Math. Nachr., 82:1 (1978), 115–119 | DOI | MR | Zbl

[8] Jonah D., Konvisser M., “Some nonabelian $ p$-groups with abelian automorphism groups”, Arch. Math., 2:1 (1975), 131—133 | DOI | MR

[9] Koenigsmann J., “Solvable absolute Galois groups are metabelian”, Invent. Math., 144 (2001), 1–22 | DOI | MR | Zbl

[10] Kuhlmann F. V., A Correction to Epp's paper “Elimination of Wild Ramification”, 2010, arXiv: 1003.5687v1 [math.AC] | MR

[11] Lbekkouri A., “On the solvability in local extensions”, An. Şt. Univ. Ovidius Constanţa, 22:2 (2014), 121–127 | DOI | MR | Zbl

[12] Neukirch J., Shmidt A., Wingberg K., Cohomology of Number Fields, Grundlehren Math. Wiss., 323, Springer—Verlag, Berlin, 2000, 720 pp. | MR | Zbl

[13] Neukirch J., Algebraic Number Theory, Springer—Verlag, Berlin–Heidelberg, 1999, 322 pp. | DOI | MR

[14] Ribes L., Zalesskii P., Profinite Groups, Ergeb. Math. Grenzgeb. (3), 40, Springer—Verlag, Berlin–Heidelberg, 2000, 483 pp. | DOI | MR | Zbl

[15] Safarevic̆ I.R., “On p-extensions”, Amer. Math. Soc. Transl. Ser. 2, 4 (1954), 59–72

[16] Saito T., “Ramification of local fields with imperfect residue fields III”, Math. Ann., 352 (2012), 567–580 | DOI | MR | Zbl

[17] Saito T., “Wild ramification and the characteristic cycle of an $l$-adic sheaf”, J. Inst. Math. Jussieu, 8:4 (2008), 769–829 | DOI | MR

[18] Serre J.-P., Local Fields, Grad. Texts in Math., 67, Springer–Verlag, New York, 1979, 241 pp. | DOI | MR | Zbl

[19] Serre J.-P., Cohomologie Galoisienne, Lecture Notes in Math., 5, Springer—Verlag, Berlin–Heidelberg, 181 pp. | DOI | MR

[20] Spriano L., “Well ramified extensions of complete discrete valuation fields with application to the Kato Conductor”, Canad. J. Math., 52:6 (2000), 1269—1309 | DOI | MR | Zbl

[21] Spriano L., “On ramification theory of monogenic extensions”, Geom. Topol. Monogr., Part I, Sect. 18, v. 3, Invitation to Higher Local Fields, eds. I. Fesenko and M. Kurihara, 2000, 151–164. | DOI | MR | Zbl

[22] Ware R., “On Galois groups of maximal $ p$-extension”, Trans. Amer. Math. Soc., 333:2 (1992), 721–728 | DOI | MR | Zbl

[23] Xiao L., “On ramification filtrations and $p$-adic differential modules, I: the equal characteristic case”, Algebra Number Theory, 4:8 (2010), 969–1027 | DOI | MR | Zbl

[24] Xiao L., “On ramification filtrations and $p$-adic differential equations, II: mixed characteristic case”, Compos. Math., 148:2 (2012), 415—463 | DOI | MR | Zbl

[25] Zariski O., Samuel P., Commutative Algebra I, Grad. Texts in Math., 28, Springer—Verlag, New York, 1975, 334 pp. | MR | Zbl

[26] Zhukov I.B., On Ramification Theory in the Imperfect Residue Field Case, Prepint No. 98-02, Nottingham Univ., 1998, arXiv: math/0201238 [math.NT] | MR

[27] Zhukov I.B., Ramification of Surfaces Artin-Schreier Extensions, 2002, arXiv: math/0209183 [math.AG] | MR

[28] Zhukov I.B., Ramification of Surfaces: Sufficient Jet Order for Wild Jumps, 2002, arXiv: math/0201071 [math.AG]