Control and estimation for a class of impulsive dynamical systems
Ural mathematical journal, Tome 5 (2019) no. 2, pp. 21-30 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The nonlinear dynamical control system with uncertainty in initial states and parameters is studied. It is assumed that the dynamic system has a special structure in which the system nonlinearity is due to the presence of quadratic forms in system velocities. The case of combined controls is studied here when both classical measurable control functions and the controls generated by vector measures are allowed. We present several theoretical schemes and the estimating algorithms allowing to find the upper bounds for reachable sets of the studied control system. The research develops the techniques of the ellipsoidal calculus and of the theory of evolution equations for set-valued states of dynamical systems having in their description the uncertainty of set-membership kind. Numerical results of system modeling based on the proposed methods are included.
Keywords: Control systems, Nonlinearity of quadratic type, Uncertainty, Impulse control, Ellipsoidal calculus, Tube of trajectories.
@article{UMJ_2019_5_2_a2,
     author = {Tatiana F. Filippova},
     title = {Control and estimation for a class of impulsive dynamical systems},
     journal = {Ural mathematical journal},
     pages = {21--30},
     year = {2019},
     volume = {5},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2019_5_2_a2/}
}
TY  - JOUR
AU  - Tatiana F. Filippova
TI  - Control and estimation for a class of impulsive dynamical systems
JO  - Ural mathematical journal
PY  - 2019
SP  - 21
EP  - 30
VL  - 5
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UMJ_2019_5_2_a2/
LA  - en
ID  - UMJ_2019_5_2_a2
ER  - 
%0 Journal Article
%A Tatiana F. Filippova
%T Control and estimation for a class of impulsive dynamical systems
%J Ural mathematical journal
%D 2019
%P 21-30
%V 5
%N 2
%U http://geodesic.mathdoc.fr/item/UMJ_2019_5_2_a2/
%G en
%F UMJ_2019_5_2_a2
Tatiana F. Filippova. Control and estimation for a class of impulsive dynamical systems. Ural mathematical journal, Tome 5 (2019) no. 2, pp. 21-30. http://geodesic.mathdoc.fr/item/UMJ_2019_5_2_a2/

[1] Asselborn L., Gro$\ss$ D., Stursberg O., “Control of uncertain nonlinear systems using ellipsoidal reachability calculus”, IFAC Proc. Volumes, 46:23 (2013), 50—55 | DOI

[2] Aubin J.-P., Frankowska H., Set-Valued Analysis, Birkhäuser, Basel, 1990, 461 pp. | MR | Zbl

[3] August E., Lu J., Koeppl H., “Trajectory enclosures for nonlinear systems with uncertain initial conditions and parameters”, Proc. of the 2012 American Control Conf. (June 27–29, 2012, Montréal, Canada), QC. IEEE Computer Soc., 2012, 1488–1493 | DOI

[4] Blanchini F., Miani S., Set-Theoretic Methods in Control, Syst. Control: Foundations $\$ Applications, Birkhäuser, Basel, 2015, XV+487 pp. | DOI | MR

[5] Boscain U., Chambrion T., Sigalotti M., “On some open questions in bilinear quantum control”, Proc. of the European Control Conf. (ECC) (July 17–19, 2013, Zurich, Switzerland), IEEE Xplore, 2013, 2080–2085 | DOI | MR

[6] Ceccarelli N., Di Marco M., Garulli A., Giannitrapani A., “A set theoretic approach to path planning for mobile robots”, Proc. 43rd IEEE Conf. on Decision and Control (CDC) (Dec. 14–17, 2004, Nassau, Bahamas), IEEE Xplore, 2004, 147–152 | DOI

[7] Chernousko F. L., State Estimation for Dynamic Systems, Boca Raton, CRC Press, 1994, 320 pp.

[8] Chernousko F. L., Rokityanskii D. Ya., “Ellipsoidal bounds on reachable sets of dynamical systems with matrices subjected to uncertain perturbation”, J. Optim. Theory Appl., 104:1 (2000), 1–19 | DOI | MR | Zbl

[9] Demyanov V. F., Rubinov A. M., Quasidifferential Calculus, Optimization Software Inc., New York, 1986 | MR | Zbl

[10] Filippova T. F., “Set-valued solutions to impulsive differential inclusions”, Math. Comput. Model. Dyn. Syst., 2005, no. 11, 149–158 | DOI | MR | Zbl

[11] Filippova T. F., “Differential equations of ellipsoidal state estimates in nonlinear control problems under uncertainty”, Discrete Contin. Dyn. Syst., 2011, Suppl. 2011, 410–419 | DOI | MR | Zbl

[12] Filippova T. F., “Approximation techniques in impulsive control problems for the tubes of solutions of uncertain differential systems”, Advances in Applied Mathematics and Approximation Theory, Springer Proc. Math. Stat., 41, Springer, New York, 2013, 385–396 | DOI | MR

[13] Filippova T. F., “State estimation for a class of nonlinear dynamic systems with uncertainty through dynamic programming technique”, Proc. of the 6th Int. Conf. PhysCon2013 (August 26–29, 2013, San Lois Potosi, Mexico), 2013, 1–6

[14] Filippova T. F., “Estimating reachable sets of control systems with uncertainty on initial data and with nonlinearity of a special kind”, Proc. of the Int. Conf. Stability and Oscillations of Nonlinear Control Systems (Pyatnitskiy's Conference) (June 1–3, 2016, Moscow, Russia), IEEE Xplore, 2016, 1–4 | DOI | Zbl

[15] Filippova T. F., “Ellipsoidal estimates of reachable sets for control systems with nonlinear terms”, IFAC-PapersOnLine, 50:1 (2017), 15355–15360 | DOI | MR

[16] Filippova T. F., “Dynamics and estimates of star-shaped reachable sets of nonlinear control systems”, J. Chaotic Modeling and Simulation, 4 (2017), 469–478 | MR

[17] Filippova T. F., “Estimation of star-shaped reachable sets of nonlinear control system”, Proc. Large-Scale Scientific Computing, LSSC 2017, Lecture Notes in Comput. Sci., 10665, Springer, Cham, 2018, 210–218. | DOI | MR

[18] Filippova T. F., “Differential equations for ellipsoidal estimates of reachable sets for a class of control systems with nonlinearity and uncertainty”, IFAC-PapersOnLine, 51:32 (2018), 770—775 | DOI | MR

[19] Filippova T. F., “Description of dynamics of ellipsoidal estimates of reachable sets of nonlinear control systems with bilinear uncertainty”, Numerical Methods and Applications, NMA 2018, Lecture Notes in Comput. Sci., 11189, Springer, Cham, 2019, 97–105 | DOI | MR | Zbl

[20] Filippova T. F., Lisin D. V., “On the estimation of trajectory tubes of differential inclusions”, Proc. Steklov Inst. Math., 2000, Suppl. 2, S28–S37 | MR | Zbl

[21] Filippova T. F., Matviychuk O. G., “Algorithms to estimate the reachability sets of the pulse controlled systems with ellipsoidal phase constraints”, Autom. Remote Control, 72:9 (2011), 1911—1924 | DOI | MR | Zbl

[22] Filippova T. F., Matviychuk O. G., “Algorithms of estimating reachable sets of nonlinear control systems with uncertainty”, J. Chaotic Modeling and Simulation, 3 (2015), 205–214

[23] Kishida M., Braatz R. D., “Ellipsoidal bounds on state trajectories for discrete-time systems with linear fractional uncertainties”, Optim. Eng., 16 (2015), 695–711 | DOI | MR | Zbl

[24] Kostousova E. K., Kurzhanski A. B., “Theoretical framework and approximation techniques for parallel computation in set-membership state estimation”, Proc. of the Symposium on Modelling Analysis and Simulation (July 9–12, 1996, Lille, France), v. 2, 1996, 849–854 | MR

[25] Kuntsevich V. M., Volosov V. V., “Ellipsoidal and interval estimation of state vectors for families of linear and nonlinear discrete-time dynamic systems”, Cybernet. Systems Anal., 51 (2015), 64–73 | DOI | Zbl

[26] Kurzhanski A. B., Control and Observation under Conditions of Uncertainty, Nauka, Moscow, 1977, 392 pp. (in Russian)

[27] Kurzhanski A. B., Filippova T. F., “On the theory of trajectory tubes — a mathematical formalism for uncertain dynamics, viability and Control”, Advances in Nonlinear Dynamics and Control: a Report from Russia, Progress in Systems and Control Theory, 17, ed. A. B. Kurzhanski, Birkhäuser, Boston, 1993, 122–188 | DOI | MR | Zbl

[28] Kurzhanski A. B., Valyi I., Ellipsoidal Calculus for Estimation and Control, Systems Control Found. Appl., Birkhäuser, Basel, 1997, 321 pp. | DOI | MR | Zbl

[29] Kurzhanski A. B., Varaiya P., Dynamics and Control of Trajectory Tubes: Theory and Computation, Systems Control Found. Appl., 85, Birkhäuser, Basel, 2014, 445 pp. | DOI | MR | Zbl

[30] Malyshev V. V., Tychinskii Yu. D., “Construction of sets of attainability and maneuver optimization for low-thrust artificial satellites of the earth in a strong gravitational field”, J. Comput. Syst. Sci. Int., 44:4 (2005), 622–630 | Zbl

[31] Miller B. M., “Method of discontinuous time change in problems of control for impulse and discrete-continuous systems”, Autom. Remote Control, 54:12 (1993), 1727–1750 | MR | Zbl

[32] Panasyuk A. I., “Equations of attainable set dynamics. Part 1: Integral funnel equations”, J. Optimiz. Theory Appl., 64 (1990), 349–366 | DOI | MR | Zbl

[33] Pereira F. L., Filippova T. F., “On a solution concept to impulsive differential systems”, Proc. of 4th Int. Conf. Tools for Mathematical Modelling (MathTools'03) (June 23–28, 2003, St. Petersburg, Russia), 2003, 350–355 | MR | Zbl

[34] Rishel R., “An extended Pontryagin principle for control system whose control laws contain measures”, SIAM J. Control, 3 (1965), 191–205 | MR | Zbl

[35] Schweppe F. C., Uncertain Dynamic Systems, Prentice-Hall, Englewood Cliffs, New Jersey, 1973, 563 pp.

[36] Veliov V. M., “Second order discrete approximations to strongly convex differential inclusions”, Systems Control Lett., 13 (1989), 263–269 | DOI | MR | Zbl

[37] Veliov V. M., “Second-order discrete approximation to linear differential inclusions”, SIAM J. Numer. Anal., 29:2 (1992), 439–451 | DOI | MR | Zbl