Regular global attractors for wave equations with degenerate memory
Ural mathematical journal, Tome 5 (2019) no. 1, pp. 59-82 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the wave equation with degenerate viscoelastic dissipation recently examined in Cavalcanti, Fatori, and Ma, Attractors for wave equations with degenerate memory, J. Differential Equations (2016). Under certain extra assumptions (namely on the nonlinear term), we show the existence of a compact attracting set which provides further regularity for the global attractor and show that it consists of regular solutions
Keywords: degenerate viscoelasticity, relative displacement history, nonlinear wave equation, critical exponent, regular global attractor.
@article{UMJ_2019_5_1_a6,
     author = {Joseph L. Shomberg},
     title = {Regular global attractors for wave equations with degenerate memory},
     journal = {Ural mathematical journal},
     pages = {59--82},
     year = {2019},
     volume = {5},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2019_5_1_a6/}
}
TY  - JOUR
AU  - Joseph L. Shomberg
TI  - Regular global attractors for wave equations with degenerate memory
JO  - Ural mathematical journal
PY  - 2019
SP  - 59
EP  - 82
VL  - 5
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UMJ_2019_5_1_a6/
LA  - en
ID  - UMJ_2019_5_1_a6
ER  - 
%0 Journal Article
%A Joseph L. Shomberg
%T Regular global attractors for wave equations with degenerate memory
%J Ural mathematical journal
%D 2019
%P 59-82
%V 5
%N 1
%U http://geodesic.mathdoc.fr/item/UMJ_2019_5_1_a6/
%G en
%F UMJ_2019_5_1_a6
Joseph L. Shomberg. Regular global attractors for wave equations with degenerate memory. Ural mathematical journal, Tome 5 (2019) no. 1, pp. 59-82. http://geodesic.mathdoc.fr/item/UMJ_2019_5_1_a6/

[1] Cannarsa P., Rocchetti D., Vancostenoble J., “Generation of analytic semi-groups in ${L}^2$ for a class of second order degenerate elliptic operators”, Control Cybernet., 37:4 (2008), 831–878 http://matwbn.icm.edu.pl/ksiazki/cc/cc37/cc3746.pdf | MR | Zbl

[2] Carvalho A. N., Cholewa J. W., “Attractors for strongly damped wave equations with critical nonlinearities”, Pacific J. Math., 207:2 (2002), 287–310 | DOI | MR | Zbl

[3] Carvalho A. N., Cholewa J. W., “Local well posedness for strongly damped wave equations with critical nonlinearities”, Bull. Austral. Math. Soc., 66:3 (2002), 443–463 | DOI | MR | Zbl

[4] Cavalcanti M. M., Fatori L. H., Ma T. F., “Attractors for wave equations with degenerate memory”, J. Differential Equations, 260:1 (2016), 56–83 | DOI | MR | Zbl

[5] Cavaterra C., Gal C. G., Grasselli M., “Cahn–Hilliard equations with memory and dynamic boundary conditions”, Asymptot. Anal., 71:3 (2011), 123–162 | DOI | MR | Zbl

[6] Chueshov I., Dynamics of Quasi-Stable Dissipative Systems, Springer, Switzerland, 2015, 390 pp. | DOI | MR | Zbl

[7] Chueshov I., Lasiecka I., Von Karman Evolution Equations. Well-Posedness and Long-Time Dynamics, Springer-Verlag, New York, 2010, 770 pp. | DOI | MR | Zbl

[8] Conti M., Mola G., “3-D viscous Cahn–Hilliard equation with memory”, Math. Models Methods Appl. Sci., 32:11 (2008), 1370–1395 | DOI | MR

[9] Conti M., Pata V., “Weakly dissipative semilinear equations of viscoelasticity”, Commun. Pure Appl. Anal., 4:4 (2005), 705–720 | DOI | MR | Zbl

[10] Conti M., Pata V., Squassina M., “Singular limit of dissipative hyperbolic equations with memory”, Discrete Contin. Dyn. Syst., 2005, 200–208 https://www.aimsciences.org/article/doi/10.3934/proc.2005.2005.200 | MR | Zbl

[11] Conti M., Pata V., Squassina M., “Singular limit of differential systems with memory”, Indiana Univ. Math. J., 55:1 (2007), 169–215 https://www.jstor.org/stable/24902350 | MR

[12] Dell'Oro F., Pata V., “Long-term analysis of strongly damped nonlinear wave equations”, Nonlinearity, 24:12 (2011), 3413–3435 | DOI | MR | Zbl

[13] Feng B., Pelicer M. L., Andrade D., “Long-time behavior of a semilinear wave equation with memory”, Bound. Value Probl., 2016, Art. no. 37 | DOI | MR

[14] Frigeri S., “Attractors for semilinear damped wave equations with an acoustic boundary condition”, J. Evol. Equ., 10:1 (2010), 29–58 | DOI | MR | Zbl

[15] Gal C. G., Grasselli M., “Singular limit of viscous Cahn–Hilliard equations with memory and dynamic boundary conditions”, Discrete Contin. Dyn. Syst. Ser. B, 18:6 (2013), 1581–1610 | DOI | MR | Zbl

[16] Gal C. G., Shomberg J. L., “Hyperbolic relaxation of reaction-diffusion equations with dynamic boundary conditions”, Quart. Appl. Math., 73:1 (2015), 93–129 | DOI | MR | Zbl

[17] Gatti S., Grasselli M., Pata V., Squassina M., “Robust exponential attractors for a family of nonconserved phase-field systems with memory”, Discrete Contin. Dyn. Syst., 12:5 (2005), 1019–1029 | DOI | MR | Zbl

[18] Gatti S., Miranville A., Pata V., Zelik S., “Continuous families of exponential attractors for singularly perturbed equations with memory”, Proc. Roy. Soc. Edinburgh Sect. A, 140:2 (2010), 329–366 | DOI | MR | Zbl

[19] Gilbarg D., Trudinger N. S., Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Heidelberg, 1977, 401 pp. | DOI | MR | Zbl

[20] Giorgi C., Rivera J. E. M, Pata V., “Global attractors for a semilinear hyperbolic equation in viscoelasticity”, J. Math. Anal. Appl., 260:1 (2001), 83–99 | DOI | MR | Zbl

[21] Graber Ph. J., Shomberg J. L., “Attractors for strongly damped wave equations with nonlinear hyperbolic dynamic boundary conditions”, Nonlinearity, 29:4 (2016), 1171–1212 | DOI | MR | Zbl

[22] Grasselli M., Pata V., “Asymptotic behavior of a parabolic-hyperbolic system”, Commun. Pure Appl. Anal., 3:4 (2004), 849–881 | DOI | MR | Zbl

[23] Joly R., Laurent C., “Stabilization for the semilinear wave equation with geometric control condition”, Anal. PDE, 6:5 (2013), 1089–1119 https://projecteuclid.org/euclid.apde/1513731398 | MR | Zbl

[24] Li F., Zhao C., “Uniform energy decay rates for nonlinear viscoelastic wave equation with nonlocal boundary damping”, Nonlinear Anal., 74:11 (2011), 3468–3477 | DOI | MR | Zbl

[25] Pata V., Squassina M., “On the strongly damped wave equation”, Comm. Math. Phys., 253:3 (2005), 511–533 | DOI | MR | Zbl

[26] Pata V., Zelik S., “Smooth attractors for strongly damped wave equations”, Nonlinearity, 19:7 (2006), 1495–1506 | DOI | MR | Zbl

[27] Pata V., Zucchi A., “Attractors for a damped hyperbolic equation with linear memory”, Adv. Math. Sci. Appl., 11:2 (2001), 505–529 | MR | Zbl

[28] Di Plinio F., Pata V., “Robust exponential attractors for the strongly damped wave equation with memory. II”, Russ. J. Math. Phys., 16:1 (2009), 61–73 | DOI | MR | Zbl

[29] Di Plinio F., Pata V., Zelik S., “On the strongly damped wave equation with memory”, Indiana Univ. Math. J., 57:2 (2008), 757–780 https://www.jstor.org/stable/24902971 | MR | Zbl

[30] Santos M., “On the wave equations with memory in noncylindrical domains”, Electron. J. Differential Equations, 2007:128 (2007), 1–18 https://ejde.math.txstate.edu/Volumes/2007/128/santos.pdf | MR

[31] Tahamtani F., Peyravi A., “General decay of solutions for a nonlinear viscoelastic wave equation with nonlocal boundary damping”, Miskolc Math. Notes, 15:2 (2014), 753–760 | DOI | MR | Zbl