@article{UMJ_2019_5_1_a6,
author = {Joseph L. Shomberg},
title = {Regular global attractors for wave equations with degenerate memory},
journal = {Ural mathematical journal},
pages = {59--82},
year = {2019},
volume = {5},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UMJ_2019_5_1_a6/}
}
Joseph L. Shomberg. Regular global attractors for wave equations with degenerate memory. Ural mathematical journal, Tome 5 (2019) no. 1, pp. 59-82. http://geodesic.mathdoc.fr/item/UMJ_2019_5_1_a6/
[1] Cannarsa P., Rocchetti D., Vancostenoble J., “Generation of analytic semi-groups in ${L}^2$ for a class of second order degenerate elliptic operators”, Control Cybernet., 37:4 (2008), 831–878 http://matwbn.icm.edu.pl/ksiazki/cc/cc37/cc3746.pdf | MR | Zbl
[2] Carvalho A. N., Cholewa J. W., “Attractors for strongly damped wave equations with critical nonlinearities”, Pacific J. Math., 207:2 (2002), 287–310 | DOI | MR | Zbl
[3] Carvalho A. N., Cholewa J. W., “Local well posedness for strongly damped wave equations with critical nonlinearities”, Bull. Austral. Math. Soc., 66:3 (2002), 443–463 | DOI | MR | Zbl
[4] Cavalcanti M. M., Fatori L. H., Ma T. F., “Attractors for wave equations with degenerate memory”, J. Differential Equations, 260:1 (2016), 56–83 | DOI | MR | Zbl
[5] Cavaterra C., Gal C. G., Grasselli M., “Cahn–Hilliard equations with memory and dynamic boundary conditions”, Asymptot. Anal., 71:3 (2011), 123–162 | DOI | MR | Zbl
[6] Chueshov I., Dynamics of Quasi-Stable Dissipative Systems, Springer, Switzerland, 2015, 390 pp. | DOI | MR | Zbl
[7] Chueshov I., Lasiecka I., Von Karman Evolution Equations. Well-Posedness and Long-Time Dynamics, Springer-Verlag, New York, 2010, 770 pp. | DOI | MR | Zbl
[8] Conti M., Mola G., “3-D viscous Cahn–Hilliard equation with memory”, Math. Models Methods Appl. Sci., 32:11 (2008), 1370–1395 | DOI | MR
[9] Conti M., Pata V., “Weakly dissipative semilinear equations of viscoelasticity”, Commun. Pure Appl. Anal., 4:4 (2005), 705–720 | DOI | MR | Zbl
[10] Conti M., Pata V., Squassina M., “Singular limit of dissipative hyperbolic equations with memory”, Discrete Contin. Dyn. Syst., 2005, 200–208 https://www.aimsciences.org/article/doi/10.3934/proc.2005.2005.200 | MR | Zbl
[11] Conti M., Pata V., Squassina M., “Singular limit of differential systems with memory”, Indiana Univ. Math. J., 55:1 (2007), 169–215 https://www.jstor.org/stable/24902350 | MR
[12] Dell'Oro F., Pata V., “Long-term analysis of strongly damped nonlinear wave equations”, Nonlinearity, 24:12 (2011), 3413–3435 | DOI | MR | Zbl
[13] Feng B., Pelicer M. L., Andrade D., “Long-time behavior of a semilinear wave equation with memory”, Bound. Value Probl., 2016, Art. no. 37 | DOI | MR
[14] Frigeri S., “Attractors for semilinear damped wave equations with an acoustic boundary condition”, J. Evol. Equ., 10:1 (2010), 29–58 | DOI | MR | Zbl
[15] Gal C. G., Grasselli M., “Singular limit of viscous Cahn–Hilliard equations with memory and dynamic boundary conditions”, Discrete Contin. Dyn. Syst. Ser. B, 18:6 (2013), 1581–1610 | DOI | MR | Zbl
[16] Gal C. G., Shomberg J. L., “Hyperbolic relaxation of reaction-diffusion equations with dynamic boundary conditions”, Quart. Appl. Math., 73:1 (2015), 93–129 | DOI | MR | Zbl
[17] Gatti S., Grasselli M., Pata V., Squassina M., “Robust exponential attractors for a family of nonconserved phase-field systems with memory”, Discrete Contin. Dyn. Syst., 12:5 (2005), 1019–1029 | DOI | MR | Zbl
[18] Gatti S., Miranville A., Pata V., Zelik S., “Continuous families of exponential attractors for singularly perturbed equations with memory”, Proc. Roy. Soc. Edinburgh Sect. A, 140:2 (2010), 329–366 | DOI | MR | Zbl
[19] Gilbarg D., Trudinger N. S., Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Heidelberg, 1977, 401 pp. | DOI | MR | Zbl
[20] Giorgi C., Rivera J. E. M, Pata V., “Global attractors for a semilinear hyperbolic equation in viscoelasticity”, J. Math. Anal. Appl., 260:1 (2001), 83–99 | DOI | MR | Zbl
[21] Graber Ph. J., Shomberg J. L., “Attractors for strongly damped wave equations with nonlinear hyperbolic dynamic boundary conditions”, Nonlinearity, 29:4 (2016), 1171–1212 | DOI | MR | Zbl
[22] Grasselli M., Pata V., “Asymptotic behavior of a parabolic-hyperbolic system”, Commun. Pure Appl. Anal., 3:4 (2004), 849–881 | DOI | MR | Zbl
[23] Joly R., Laurent C., “Stabilization for the semilinear wave equation with geometric control condition”, Anal. PDE, 6:5 (2013), 1089–1119 https://projecteuclid.org/euclid.apde/1513731398 | MR | Zbl
[24] Li F., Zhao C., “Uniform energy decay rates for nonlinear viscoelastic wave equation with nonlocal boundary damping”, Nonlinear Anal., 74:11 (2011), 3468–3477 | DOI | MR | Zbl
[25] Pata V., Squassina M., “On the strongly damped wave equation”, Comm. Math. Phys., 253:3 (2005), 511–533 | DOI | MR | Zbl
[26] Pata V., Zelik S., “Smooth attractors for strongly damped wave equations”, Nonlinearity, 19:7 (2006), 1495–1506 | DOI | MR | Zbl
[27] Pata V., Zucchi A., “Attractors for a damped hyperbolic equation with linear memory”, Adv. Math. Sci. Appl., 11:2 (2001), 505–529 | MR | Zbl
[28] Di Plinio F., Pata V., “Robust exponential attractors for the strongly damped wave equation with memory. II”, Russ. J. Math. Phys., 16:1 (2009), 61–73 | DOI | MR | Zbl
[29] Di Plinio F., Pata V., Zelik S., “On the strongly damped wave equation with memory”, Indiana Univ. Math. J., 57:2 (2008), 757–780 https://www.jstor.org/stable/24902971 | MR | Zbl
[30] Santos M., “On the wave equations with memory in noncylindrical domains”, Electron. J. Differential Equations, 2007:128 (2007), 1–18 https://ejde.math.txstate.edu/Volumes/2007/128/santos.pdf | MR
[31] Tahamtani F., Peyravi A., “General decay of solutions for a nonlinear viscoelastic wave equation with nonlocal boundary damping”, Miskolc Math. Notes, 15:2 (2014), 753–760 | DOI | MR | Zbl