Jacobi transform of $(\nu, \gamma, p)$-Jacobi-Lipschitz functions in the space $\mathrm{L}^{p}(\mathbb{R}^{+},\Delta_{(\alpha,\beta)}(t) dt)$
Ural mathematical journal, Tome 5 (2019) no. 1, pp. 53-58 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Using a generalized translation operator, we obtain an analog of Younis' theorem [Theorem 5.2, Younis M. S. Fourier transforms of Dini–Lipschitz functions, Int. J. Math. Math. Sci., 1986] for the Jacobi transform for functions from the $(\nu, \gamma, p)$-Jacobi–Lipschitz class in the space $\mathrm{L}^{p}(\mathbb{R}^{+},\Delta_{(\alpha,\beta)}(t)dt)$.
Keywords: Jacobi operator, Generalized translation operator.
Mots-clés : Jacobi transform
@article{UMJ_2019_5_1_a5,
     author = {Mohamed El Hamma and Hamad Sidi Lafdal and Nisrine Djellab and Chaimaa Khalil},
     title = {Jacobi transform of $(\nu, \gamma, p)${-Jacobi-Lipschitz} functions in the space $\mathrm{L}^{p}(\mathbb{R}^{+},\Delta_{(\alpha,\beta)}(t) dt)$},
     journal = {Ural mathematical journal},
     pages = {53--58},
     year = {2019},
     volume = {5},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2019_5_1_a5/}
}
TY  - JOUR
AU  - Mohamed El Hamma
AU  - Hamad Sidi Lafdal
AU  - Nisrine Djellab
AU  - Chaimaa Khalil
TI  - Jacobi transform of $(\nu, \gamma, p)$-Jacobi-Lipschitz functions in the space $\mathrm{L}^{p}(\mathbb{R}^{+},\Delta_{(\alpha,\beta)}(t) dt)$
JO  - Ural mathematical journal
PY  - 2019
SP  - 53
EP  - 58
VL  - 5
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UMJ_2019_5_1_a5/
LA  - en
ID  - UMJ_2019_5_1_a5
ER  - 
%0 Journal Article
%A Mohamed El Hamma
%A Hamad Sidi Lafdal
%A Nisrine Djellab
%A Chaimaa Khalil
%T Jacobi transform of $(\nu, \gamma, p)$-Jacobi-Lipschitz functions in the space $\mathrm{L}^{p}(\mathbb{R}^{+},\Delta_{(\alpha,\beta)}(t) dt)$
%J Ural mathematical journal
%D 2019
%P 53-58
%V 5
%N 1
%U http://geodesic.mathdoc.fr/item/UMJ_2019_5_1_a5/
%G en
%F UMJ_2019_5_1_a5
Mohamed El Hamma; Hamad Sidi Lafdal; Nisrine Djellab; Chaimaa Khalil. Jacobi transform of $(\nu, \gamma, p)$-Jacobi-Lipschitz functions in the space $\mathrm{L}^{p}(\mathbb{R}^{+},\Delta_{(\alpha,\beta)}(t) dt)$. Ural mathematical journal, Tome 5 (2019) no. 1, pp. 53-58. http://geodesic.mathdoc.fr/item/UMJ_2019_5_1_a5/

[1] Anker J.-P., Damek E. and Yacoub C., “Spherical analysis on harmonic $AN$ groups”, Ann. Sc. Norm. Super. Pisa Cl. Sci. (4), 23:4 (1996), 643–679 http://www.numdam.org/item/ASNSP_1996_4_23_4_643_0/ | MR | Zbl

[2] Bray W. O., Pinsky M. A., “Growth properties of Fourier transforms via moduli of continuity”, J. Funct. Anal., 255:9 (2008), 2265–2285 | DOI | MR | Zbl

[3] Chokri A., Jemai A., “Integrability theorems for Fourier–Jacobi transform”, J. Math. Inequal., 6:3 (2012), 343–353 | DOI | MR | Zbl

[4] Daher R., El Hamma M., “Some estimates for the Jacobi transform in the space $\mathrm{L}^{2} (\mathbb{R}^{+}, \Delta_{(\alpha,\beta)}(t)dt)$”, Int. J. Appl. Math., 25:1 (2012), 13–24 | MR

[5] Flensted-Jensen M., Koornwinder T. H., “The convolution structure for Jacobi expansions”, Ark. Mat., 11:1–2 (1973), 245–262 | DOI | MR | Zbl

[6] Koornwinder T. H., “Jacobi functions and analysis on noncompact semisimple Lie groups”, Special Functions: Group Theoretical Aspect and Applications, 18 (1984), 1–85 | DOI | MR | Zbl

[7] Platonov S. S., “Approximation of functions in $\mathrm{L}_{2}$-metric on noncompact symmetric spaces of rank 1”, Algebra i Analiz, 11:1 (1999), 244–270 | MR | Zbl

[8] Younis M. S., “Fourier transforms of Dini–Lipschitz functions”, Int. J. Math. Math. Sci., 9 (1986), 301–312 | DOI | MR | Zbl