Commutative weakly invo-clean group rings
Ural mathematical journal, Tome 5 (2019) no. 1, pp. 48-52 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A ring $R$ is called weakly invo-clean if any its element is the sum or the difference of an involution and an idempotent. For each commutative unital ring $R$ and each abelian group $G$, we find only in terms of $R$, $G$ and their sections a necessary and sufficient condition when the group ring $R[G]$ is weakly invo-clean. Our established result parallels to that due to Danchev-McGovern published in J. Algebra (2015) and proved for weakly nil-clean rings.
Keywords: invo-clean rings, weakly invo-clean rings, group rings.
@article{UMJ_2019_5_1_a4,
     author = {Peter V. Danchev},
     title = {Commutative weakly invo-clean group rings},
     journal = {Ural mathematical journal},
     pages = {48--52},
     year = {2019},
     volume = {5},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2019_5_1_a4/}
}
TY  - JOUR
AU  - Peter V. Danchev
TI  - Commutative weakly invo-clean group rings
JO  - Ural mathematical journal
PY  - 2019
SP  - 48
EP  - 52
VL  - 5
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UMJ_2019_5_1_a4/
LA  - en
ID  - UMJ_2019_5_1_a4
ER  - 
%0 Journal Article
%A Peter V. Danchev
%T Commutative weakly invo-clean group rings
%J Ural mathematical journal
%D 2019
%P 48-52
%V 5
%N 1
%U http://geodesic.mathdoc.fr/item/UMJ_2019_5_1_a4/
%G en
%F UMJ_2019_5_1_a4
Peter V. Danchev. Commutative weakly invo-clean group rings. Ural mathematical journal, Tome 5 (2019) no. 1, pp. 48-52. http://geodesic.mathdoc.fr/item/UMJ_2019_5_1_a4/

[1] Danchev P. V., “Invo-clean unital rings”, Commun. Korean Math. Soc., 32:1 (2017), 19–27 | DOI | MR | Zbl

[2] Danchev P. V., “Weakly invo-clean unital rings”, Afr. Mat., 28:7–8 (2017), 1285–1295 | DOI | MR | Zbl

[3] Danchev P. V., “Feebly invo-clean unital rings”, Ann. Univ. Sci. Budapest (Math.), 60 (2017), 85–91 | MR | Zbl

[4] Danchev P. V., “Weakly semi-boolean unital rings”, JP J. Algebra Number Theory Appl., 39:3 (2017), 261–276 | DOI | MR | Zbl

[5] Danchev P. V., “Commutative invo-clean group rings”, Univ. J. Math. Math. Sci., 11:1 (2018), 1–6 | DOI | MR

[6] Danchev P. V., McGovern W. Wm., “Commutative weakly nil clean unital rings”, J. Algebra, 425:5 (2015), 410–422 | DOI | MR | Zbl

[7] Karpilovsky G., “The Jacobson radical of commutative group rings”, Arch. Math. (Basel), 39:5 (1982), 428–430 | DOI | MR | Zbl

[8] McGovern W. Wm., Raja Sh., Sharp A., “Commutative nil clean group rings”, J. Algebra Appl., 14:6 (2015), art. no. 1550094 | DOI | MR

[9] Milies C. P., Sehgal S. K., An Introduction to Group Rings, Springer, Netherlands, 2002, 371 pp. | MR

[10] Passman D. S., The Algebraic Structure of Group Rings, Dover Publications, New York, 2011, 752 pp. | MR