Commutative weakly invo-clean group rings
Ural mathematical journal, Tome 5 (2019) no. 1, pp. 48-52

Voir la notice de l'article provenant de la source Math-Net.Ru

A ring $R$ is called weakly invo-clean if any its element is the sum or the difference of an involution and an idempotent. For each commutative unital ring $R$ and each abelian group $G$, we find only in terms of $R$, $G$ and their sections a necessary and sufficient condition when the group ring $R[G]$ is weakly invo-clean. Our established result parallels to that due to Danchev-McGovern published in J. Algebra (2015) and proved for weakly nil-clean rings.
Keywords: invo-clean rings, weakly invo-clean rings, group rings.
@article{UMJ_2019_5_1_a4,
     author = {Peter V. Danchev},
     title = {Commutative weakly invo-clean group rings},
     journal = {Ural mathematical journal},
     pages = {48--52},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2019_5_1_a4/}
}
TY  - JOUR
AU  - Peter V. Danchev
TI  - Commutative weakly invo-clean group rings
JO  - Ural mathematical journal
PY  - 2019
SP  - 48
EP  - 52
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UMJ_2019_5_1_a4/
LA  - en
ID  - UMJ_2019_5_1_a4
ER  - 
%0 Journal Article
%A Peter V. Danchev
%T Commutative weakly invo-clean group rings
%J Ural mathematical journal
%D 2019
%P 48-52
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UMJ_2019_5_1_a4/
%G en
%F UMJ_2019_5_1_a4
Peter V. Danchev. Commutative weakly invo-clean group rings. Ural mathematical journal, Tome 5 (2019) no. 1, pp. 48-52. http://geodesic.mathdoc.fr/item/UMJ_2019_5_1_a4/